IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v118y2008i6p1043-1055.html
   My bibliography  Save this article

Nonparametric estimation and testing time-homogeneity for processes with independent increments

Author

Listed:
  • Nishiyama, Yoichi

Abstract

We consider a nonparametric estimation problem for the Lévy measure of time-inhomogeneous process with independent increments. We derive the functional asymptotic normality and efficiency, in an l[infinity]-space, of generalized Nelson-Aalen estimators. Also we propose some asymptotically distribution free tests for time-homogeneity of the Lévy measure. Our result is a fruit of the empirical process theory and the martingale theory.

Suggested Citation

  • Nishiyama, Yoichi, 2008. "Nonparametric estimation and testing time-homogeneity for processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1043-1055, June.
  • Handle: RePEc:eee:spapps:v:118:y:2008:i:6:p:1043-1055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00133-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sangyeol Lee & Yoichi Nishiyama & Nakahiro Yoshida, 2006. "Test for Parameter Change in Diffusion Processes by Cusum Statistics Based on One-step Estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 211-222, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shimizu, Yasutaka, 2009. "Functional estimation for Lvy measures of semimartingales with Poissonian jumps," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1073-1092, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junmo Song & Sangyeol Lee, 2009. "Test for parameter change in discretely observed diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 12(2), pages 165-183, June.
    2. Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2022. "Adaptive tests for parameter changes in ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 397-430, July.
    3. Habibi Reza, 2011. "A note on approximating distribution functions of cusum and cusumsq tests," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 1-10, January.
    4. Mihalache, Stefan, 2012. "Strong approximations and sequential change-point analysis for diffusion processes," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 464-472.
    5. Herold Dehling & Brice Franke & Thomas Kott & Reg Kulperger, 2014. "Change point testing for the drift parameters of a periodic mean reversion process," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 1-18, April.
    6. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    7. Stefano Maria IACUS & Nakahiro YOSHIDA, 2009. "Estimation for the change point of the volatility in a stochastic differential equation," Departmental Working Papers 2009-49, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    8. Koji Tsukuda, 2017. "A change detection procedure for an ergodic diffusion process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 833-864, August.
    9. Okyoung Na & Youngmi Lee & Sangyeol Lee, 2011. "Monitoring parameter change in time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(2), pages 171-199, June.
    10. Ilia Negri & Yoichi Nishiyama, 2012. "Asymptotically distribution free test for parameter change in a diffusion process model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 911-918, October.
    11. Iacus, Stefano M. & Yoshida, Nakahiro, 2012. "Estimation for the change point of volatility in a stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1068-1092.
    12. Stefano M. Iacus & Nakahiro Yoshida, 2010. "Numerical Analysis of Volatility Change Point Estimators for Discretely Sampled Stochastic Differential Equations," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 107-127, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:118:y:2008:i:6:p:1043-1055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.