IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i5p613-628.html
   My bibliography  Save this article

Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity

Author

Listed:
  • Confortola, Fulvia

Abstract

In this paper we study a class of backward stochastic differential equations (BSDEs) of the form in an infinite dimensional Hilbert space H, where the unbounded operator A is sectorial and dissipative and the nonlinearity f0(t,y) is dissipative and defined for y only taking values in a subspace of H. A typical example is provided by the so-called polynomial nonlinearities. Applications are given to stochastic partial differential equations and spin systems.

Suggested Citation

  • Confortola, Fulvia, 2007. "Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity," Stochastic Processes and their Applications, Elsevier, vol. 117(5), pages 613-628, May.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:5:p:613-628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00138-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    2. Ma, Jin & Yong, Jiongmin, 1997. "Adapted solution of a degenerate backward spde, with applications," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 59-84, October.
    3. Pardoux, Etienne & Rascanu, Aurel, 1998. "Backward stochastic differential equations with subdifferential operator and related variational inequalities," Stochastic Processes and their Applications, Elsevier, vol. 76(2), pages 191-215, August.
    4. Briand, Ph. & Delyon, B. & Hu, Y. & Pardoux, E. & Stoica, L., 2003. "Lp solutions of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 109-129, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    2. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    3. Graewe, Paulwin & Popier, Alexandre, 2021. "Asymptotic approach for backward stochastic differential equation with singular terminal condition," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 247-277.
    4. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    5. Kruse, T. & Popier, A., 2016. "Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2554-2592.
    6. Fan, ShengJun, 2016. "Bounded solutions, Lp(p>1) solutions and L1 solutions for one dimensional BSDEs under general assumptions," Stochastic Processes and their Applications, Elsevier, vol. 126(5), pages 1511-1552.
    7. Xing, Hao, 2012. "On backward stochastic differential equations and strict local martingales," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2265-2291.
    8. Mingyu Xu & Zuo Quan Xu & Xun Yu Zhou, 2022. "$g$-Expectation of Distributions," Papers 2208.06535, arXiv.org.
    9. Fan, Shengjun & Hu, Ying, 2021. "Well-posedness of scalar BSDEs with sub-quadratic generators and related PDEs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 21-50.
    10. Bender, Christian, 2014. "Backward SDEs driven by Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2892-2916.
    11. Matoussi, A. & Piozin, L. & Popier, A., 2017. "Stochastic partial differential equations with singular terminal condition," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 831-876.
    12. Fan, ShengJun & Jiang, Long & Tian, DeJian, 2011. "One-dimensional BSDEs with finite and infinite time horizons," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 427-440, March.
    13. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    14. Geiss, Stefan & Ylinen, Juha, 2020. "Weighted bounded mean oscillation applied to backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3711-3752.
    15. Sheng-Jun Fan & Long Jiang, 2012. "A Generalized Comparison Theorem for BSDEs and Its Applications," Journal of Theoretical Probability, Springer, vol. 25(1), pages 50-61, March.
    16. Eduard Rotenstein, 2008. "Pricing financial derivatives by a minimizing method," Papers 0811.4613, arXiv.org, revised Oct 2013.
    17. Lüders, Erik & Peisl, Bernhard, 2001. "How do investors' expectations drive asset prices?," ZEW Discussion Papers 01-15, ZEW - Leibniz Centre for European Economic Research.
    18. Sascha Desmettre & Sebastian Merkel & Annalena Mickel & Alexander Steinicke, 2023. "Worst-Case Optimal Investment in Incomplete Markets," Papers 2311.10021, arXiv.org.
    19. Zhang, HengMin & Fan, ShengJun, 2013. "A representation theorem for generators of BSDEs with finite or infinite time intervals and linear-growth generators," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 724-734.
    20. Eduard Kromer & Ludger Overbeck, 2017. "DIFFERENTIABILITY OF BSVIEs AND DYNAMIC CAPITAL ALLOCATIONS," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:5:p:613-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.