IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v116y2006i11p1660-1675.html
   My bibliography  Save this article

Simulation of conditioned diffusion and application to parameter estimation

Author

Listed:
  • Delyon, Bernard
  • Hu, Ying

Abstract

In this paper, we propose some algorithms for the simulation of the distribution of certain diffusions conditioned on a terminal point. We prove that the conditional distribution is absolutely continuous with respect to the distribution of another diffusion which is easy for simulation, and the formula for the density is given explicitly. An example of parameter estimation for a Duffing-Van der Pol oscillator is given as an application.

Suggested Citation

  • Delyon, Bernard & Hu, Ying, 2006. "Simulation of conditioned diffusion and application to parameter estimation," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1660-1675, November.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:11:p:1660-1675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00046-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
    2. Stefan Sommer, 2019. "An Infinitesimal Probabilistic Model for Principal Component Analysis of Manifold Valued Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 37-62, February.
    3. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    4. Mogens Bladt & Samuel Finch & Michael Sørensen, 2016. "Simulation of multivariate diffusion bridges," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
    5. Marcin Mider & Paul A. Jenkins & Murray Pollock & Gareth O. Roberts, 2022. "The Computational Cost of Blocking for Sampling Discretely Observed Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3007-3027, December.
    6. Bernard Delyon & Jean-Louis Marchand, 2023. "Conditioning diffusions with respect to incomplete observations," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 499-523, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:11:p:1660-1675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.