Delay differential equations driven by Lévy processes: Stationarity and Feller properties
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gushchin, Alexander A. & Küchler, Uwe, 2000.
"On stationary solutions of delay differential equations driven by a Lévy process,"
Stochastic Processes and their Applications, Elsevier, vol. 88(2), pages 195-211, August.
- Gushchin, Alexander A. & Küchler, Uwe, 1998. "On stationary solutions of delay differential equations driven by a Lévy process," SFB 373 Discussion Papers 1998,98, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Zhi & Long, Qinyi & Xu, Liping & Wen, Xueqi, 2022. "h-stability for stochastic Volterra–Levin equations," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
- Nguyen, Dang H. & Nguyen, Nhu N. & Yin, George, 2021. "Stochastic functional Kolmogorov equations, I: Persistence," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 319-364.
- Carsten Chong, 2017. "Lévy-driven Volterra Equations in Space and Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 1014-1058, September.
- Xi, Fubao & Yin, George, 2013. "The strong Feller property of switching jump-diffusion processes," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 761-767.
- Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2015. "Hypercontractivity for functional stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3636-3656.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
- Li, Zhi & Long, Qinyi & Xu, Liping & Wen, Xueqi, 2022. "h-stability for stochastic Volterra–Levin equations," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Küchler, Uwe & Gapeev, Pavel V., 2003. "On Large Deviations in Testing Ornstein-Uhlenbeck Type Models with Delay," SFB 373 Discussion Papers 2003,45, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Uwe Küchler & Vyacheslav Vasiliev, 2005. "Sequential Identification of Linear Dynamic Systems with Memory," Statistical Inference for Stochastic Processes, Springer, vol. 8(1), pages 1-24, January.
- Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
- Nielsen, Mikkel Slot, 2020. "On non-stationary solutions to MSDDEs: Representations and the cointegration space," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3154-3173.
- Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.
- Hutt, Axel & Atay, Fatihcan M., 2007. "Spontaneous and evoked activity in extended neural populations with gamma-distributed spatial interactions and transmission delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 547-560.
- Fasen, Vicky, 2006. "Extremes of subexponential Lévy driven moving average processes," Stochastic Processes and their Applications, Elsevier, vol. 116(7), pages 1066-1087, July.
- John Appleby & Markus Riedle & Catherine Swords, 2013. "Bubbles and crashes in a Black–Scholes model with delay," Finance and Stochastics, Springer, vol. 17(1), pages 1-30, January.
More about this item
Keywords
Feller process Invariant measure Lévy process Semimartingale characteristic Stationary solution Stochastic equation with delay Stochastic functional differential equation;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:10:p:1409-1432. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.