IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v114y2004i2p331-350.html
   My bibliography  Save this article

An approximation result for a nonlinear Neumann boundary value problem via BSDEs

Author

Listed:
  • Boufoussi, B.
  • van Casteren, J.

Abstract

We prove a weak convergence result for a sequence of backward stochastic differential equations related to a semilinear parabolic partial differential equation; under the assumption that the diffusion corresponding to the PDEs is obtained by penalization method converging to a normal reflected diffusion on a smooth and bounded domain D. As a consequence we give an approximation result to the solution of semilinear parabolic partial differential equations with nonlinear Neumann boundary conditions. A similar result in the linear case was obtained by Lions et al. in 1981.

Suggested Citation

  • Boufoussi, B. & van Casteren, J., 2004. "An approximation result for a nonlinear Neumann boundary value problem via BSDEs," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 331-350, December.
  • Handle: RePEc:eee:spapps:v:114:y:2004:i:2:p:331-350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00093-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    2. Lejay, Antoine, 2002. "BSDE driven by Dirichlet process and semi-linear parabolic PDE. Application to homogenization," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 1-39, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maticiuc, Lucian & Răşcanu, Aurel, 2016. "On the continuity of the probabilistic representation of a semilinear Neumann–Dirichlet problem," Stochastic Processes and their Applications, Elsevier, vol. 126(2), pages 572-607.
    2. Gassous, Anouar M. & Răşcanu, Aurel & Rotenstein, Eduard, 2015. "Multivalued backward stochastic differential equations with oblique subgradients," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3170-3195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hao & Žitković, Gordan, 2018. "A class of globally solvable Markovian quadratic BSDE systems and applications," LSE Research Online Documents on Economics 73440, London School of Economics and Political Science, LSE Library.
    2. Bouchard Bruno & Tan Xiaolu & Warin Xavier & Zou Yiyi, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    3. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    4. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    5. Mingyu Xu, 2007. "Reflected Backward SDEs with Two Barriers Under Monotonicity and General Increasing Conditions," Journal of Theoretical Probability, Springer, vol. 20(4), pages 1005-1039, December.
    6. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    7. Luis Escauriaza & Daniel C. Schwarz & Hao Xing, 2020. "Radner equilibrium and systems of quadratic BSDEs with discontinuous generators," Papers 2008.03500, arXiv.org, revised May 2021.
    8. N'zi, Modeste & Owo, Jean-Marc, 2009. "Backward doubly stochastic differential equations with discontinuous coefficients," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 920-926, April.
    9. Chen, Zengjing & Kulperger, Reg, 2006. "Minimax pricing and Choquet pricing," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 518-528, June.
    10. Auguste Aman, 2012. "Reflected Generalized Backward Doubly SDEs Driven by Lévy Processes and Applications," Journal of Theoretical Probability, Springer, vol. 25(4), pages 1153-1172, December.
    11. Bandini, Elena & Fuhrman, Marco, 2017. "Constrained BSDEs representation of the value function in optimal control of pure jump Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1441-1474.
    12. Jean-François Chassagneux & Romuald Elie & Idris Kharroubi, 2015. "When terminal facelift enforces delta constraints," Finance and Stochastics, Springer, vol. 19(2), pages 329-362, April.
    13. Hyndman, Cody Blaine, 2007. "Forward-backward SDEs and the CIR model," Statistics & Probability Letters, Elsevier, vol. 77(17), pages 1676-1682, November.
    14. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4), pages 311-332, October.
    15. Cao, Guilan & He, Kai, 2007. "Successive approximation of infinite dimensional semilinear backward stochastic evolution equations with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1251-1264, September.
    16. Reda Chhaibi & Ibrahim Ekren & Eunjung Noh & Lu Vy, 2022. "A unified approach to informed trading via Monge-Kantorovich duality," Papers 2210.17384, arXiv.org.
    17. Andrew Lesniewski & Anja Richter, 2016. "Managing counterparty credit risk via BSDEs," Papers 1608.03237, arXiv.org, revised Aug 2016.
    18. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    19. Bahlali, Khaled & Hamadène, SaI¨d & Mezerdi, Brahim, 2005. "Backward stochastic differential equations with two reflecting barriers and continuous with quadratic growth coefficient," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1107-1129, July.
    20. Kaitong Hu & Zhenjie Ren & Junjian Yang, 2019. "Principal-agent problem with multiple principals," Working Papers hal-02088486, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:114:y:2004:i:2:p:331-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.