IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v111y2004i1p17-39.html
   My bibliography  Save this article

An optimal Skorokhod embedding for diffusions

Author

Listed:
  • Cox, A. M. G.
  • Hobson, D. G.

Abstract

Given a Brownian motion (Bt)t[greater-or-equal, slanted]0 and a general target law [mu] (not necessarily centered or even in ) we show how to construct an embedding of [mu] in B. This embedding is an extension of an embedding due to Perkins, and is optimal in the sense that it simultaneously minimises the distribution of the maximum and maximises the distribution of the minimum among all embeddings of [mu]. The embedding is then applied to regular diffusions, and used to characterise the target laws for which a Hp-embedding may be found.

Suggested Citation

  • Cox, A. M. G. & Hobson, D. G., 2004. "An optimal Skorokhod embedding for diffusions," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 17-39, May.
  • Handle: RePEc:eee:spapps:v:111:y:2004:i:1:p:17-39
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(04)00013-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vallois, P., 1992. "Quelques inégalités avec le temps local en zero du mouvement Brownien," Stochastic Processes and their Applications, Elsevier, vol. 41(1), pages 117-155, May.
    2. Jacka, S. D., 1988. "Doob's inequalities revisited: A maximal H1-embedding," Stochastic Processes and their Applications, Elsevier, vol. 29(2), pages 281-290, September.
    3. Grandits, Peter & Falkner, Neil, 2000. "Embedding in Brownian motion with drift and the Azéma-Yor construction," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 249-254, February.
    4. Pedersen, J. L. & Peskir, G., 2001. "The Azéma-Yor embedding in non-singular diffusions," Stochastic Processes and their Applications, Elsevier, vol. 96(2), pages 305-312, December.
    5. Hambly, B. M. & Kersting, G. & Kyprianou, A. E., 2003. "Law of the iterated logarithm for oscillating random walks conditioned to stay non-negative," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 327-343, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vicky Henderson & David Hobson & Matthew Zeng, 2023. "Cautious stochastic choice, optimal stopping and deliberate randomization," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(3), pages 887-922, April.
    2. Cox, Alexander M.G. & Obłój, Jan, 2015. "On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3280-3300.
    3. Oblój, Jan, 2007. "An explicit solution to the Skorokhod embedding problem for functionals of excursions of Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 117(4), pages 409-431, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Whitmeyer, Mark, 2023. "Submission costs in risk-taking contests," Games and Economic Behavior, Elsevier, vol. 142(C), pages 101-112.
    2. Vicky Henderson & David Hobson & Matthew Zeng, 2023. "Cautious stochastic choice, optimal stopping and deliberate randomization," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(3), pages 887-922, April.
    3. Cox, Alexander M.G. & Obłój, Jan, 2015. "On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3280-3300.
    4. Graversen, S. E. & Peskir, G., 1997. "On Doob's maximal inequality for Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 111-125, July.
    5. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordère, 2018. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 569-597, November.
    6. Seel, Christian & Strack, Philipp, 2013. "Gambling in contests," Journal of Economic Theory, Elsevier, vol. 148(5), pages 2033-2048.
    7. Wang, Jiajie, 2020. "Minimal Root’s embeddings for general starting and target distributions," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 521-544.
    8. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordere, 2015. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Papers 1511.07230, arXiv.org, revised Oct 2017.
    9. Bayraktar, Erhan & Zhang, Xin, 2021. "Embedding of Walsh Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 1-28.
    10. Pedersen, J. L. & Peskir, G., 2001. "The Azéma-Yor embedding in non-singular diffusions," Stochastic Processes and their Applications, Elsevier, vol. 96(2), pages 305-312, December.
    11. Lim, Adrian P.C. & Yen, Ju-Yi & Yor, Marc, 2013. "Some examples of Skorokhod embeddings obtained from the Azéma–Yor algorithm," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 329-346.
    12. Oblój, Jan, 2007. "An explicit solution to the Skorokhod embedding problem for functionals of excursions of Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 117(4), pages 409-431, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:111:y:2004:i:1:p:17-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.