IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v95y2024ics0038012124002349.html
   My bibliography  Save this article

Assessing vehicle interdiction strategies on a complex transportation network: A simulation-based study

Author

Listed:
  • Samanta, Sukanya
  • Sen, Goutam
  • Uniyal, Jatin
  • Ghosh, Soumya Kanti

Abstract

The escape interdiction problem within the context of attacker activities on a transportation network is addressed in this study. In the absence of traffic within the network, the attacker attempts to flee the city by choosing one of the shortest paths from the crime scene to a randomly selected exit point. However, in the presence of traffic, the attacker strategically selects the optimal route that minimizes his time to reach a randomly selected exit point. On the other side, defenders try to interdict the attacker on his escape route. Defenders face the daunting challenge of interdicting the attacker’s escape route while operating under limited resources. Dealing with a real city road network further adds complexity to the scenario. A simulation-based model is proposed for the optimal allocation of resources to tackle this issue. The focus then shifts to the development of an advanced search strategy that involves routing with optimal resource allocation. This paper presents the first comparative study for escape interdiction problems within a simulation environment, explicitly focusing on solution methodologies. An optimal resource allocation approach is proposed in the presence of traffic, constituting a novel contribution that has not been previously implemented in escape interdiction problems. In addition, the paper introduces a Genetic Algorithm (GA)-based meta-heuristic approach within a simulation environment. This approach generates optimal paths for defenders, wherein each node is associated with a fixed time window, representing the defender’s waiting time. In this proposed methodology, defenders undertake a tour of the network rather than remaining stationary at a single location. This approach expands the network search capabilities, thereby requiring optimization to ascertain the optimal routes and schedules for the defender vehicles. A case study is conducted using the map of IIT Kharagpur, India, to evaluate the effectiveness of this approach. By employing this approach and conducting in-depth analyses, the aim is to provide valuable insights into the efficiency and practicality of the developed methods on real-world transportation networks.

Suggested Citation

  • Samanta, Sukanya & Sen, Goutam & Uniyal, Jatin & Ghosh, Soumya Kanti, 2024. "Assessing vehicle interdiction strategies on a complex transportation network: A simulation-based study," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124002349
    DOI: 10.1016/j.seps.2024.102035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012124002349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.102035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1063-1106, September.
    2. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    3. Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    4. Sukanya Samanta & Goutam Sen & Soumya Kanti Ghosh, 2022. "Correction to: A literature review on police patrolling problems," Annals of Operations Research, Springer, vol. 316(2), pages 1575-1575, September.
    5. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    6. Soysal, Mehmet & Koç, Çağrı & Çimen, Mustafa & İbiş, Merve, 2023. "Managing returnable transport items in a vendor managed inventory system," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    7. Vicki M. Bier & Naraphorn Haphuriwat & Jaime Menoyo & Rae Zimmerman & Alison M. Culpen, 2008. "Optimal Resource Allocation for Defense of Targets Based on Differing Measures of Attractiveness," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 763-770, June.
    8. Paola Cappanera & Maria Paola Scaparra, 2011. "Optimal Allocation of Protective Resources in Shortest-Path Networks," Transportation Science, INFORMS, vol. 45(1), pages 64-80, February.
    9. Lin, Yen-Hung & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2011. "A logistics model for emergency supply of critical items in the aftermath of a disaster," Socio-Economic Planning Sciences, Elsevier, vol. 45(4), pages 132-145, December.
    10. Tavana, Madjid & Abtahi, Amir-Reza & Di Caprio, Debora & Hashemi, Reza & Yousefi-Zenouz, Reza, 2018. "An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 21-37.
    11. Berkoune, Djamel & Renaud, Jacques & Rekik, Monia & Ruiz, Angel, 2012. "Transportation in disaster response operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 23-32.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrer, José M. & Martín-Campo, F. Javier & Ortuño, M. Teresa & Pedraza-Martínez, Alfonso J. & Tirado, Gregorio & Vitoriano, Begoña, 2018. "Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications," European Journal of Operational Research, Elsevier, vol. 269(2), pages 501-515.
    2. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Vahdani, Behnam & Veysmoradi, D. & Mousavi, S.M. & Amiri, M., 2022. "Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    5. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    6. Xuehong Gao, 2022. "A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response," Annals of Operations Research, Springer, vol. 319(1), pages 115-148, December.
    7. Maliheh Khorsi & Seyed Kamal Chaharsooghi & Ali Husseinzadeh Kashan & Ali Bozorgi-Amiri, 2022. "Solving the humanitarian multi-trip cumulative capacitated routing problem via a grouping metaheuristic algorithm," Annals of Operations Research, Springer, vol. 319(1), pages 173-210, December.
    8. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    9. Aghajani, Mojtaba & Torabi, S. Ali & Heydari, Jafar, 2020. "A novel option contract integrated with supplier selection and inventory prepositioning for humanitarian relief supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    10. Eghbal Akhlaghi, Vahid & Campbell, Ann Melissa & de Matta, Renato E., 2021. "Fuel distribution planning for disasters: Models and case study for Puerto Rico," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    11. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2020. "Planning the delivery of relief supplies upon the occurrence of a natural disaster while considering the assembly process of the relief kits," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    12. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2016. "A dynamic model for disaster response considering prioritized demand points," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 59-75.
    13. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    14. Gürler, Hasan Emin & Özçalıcı, Mehmet & Pamucar, Dragan, 2024. "Determining criteria weights with genetic algorithms for multi-criteria decision making methods: The case of logistics performance index rankings of European Union countries," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    15. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    16. Haider, Zulqarnain & Hu, Yujie & Charkhgard, Hadi & Himmelgreen, David & Kwon, Changhyun, 2022. "Creating grocery delivery hubs for food deserts at local convenience stores via spatial and temporal consolidation," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    17. Ohad Eisenhandler & Michal Tzur, 2019. "A Segment-Based Formulation and a Matheuristic for the Humanitarian Pickup and Distribution Problem," Transportation Science, INFORMS, vol. 53(5), pages 1389-1408, September.
    18. Karakose, Gokhan & McGarvey, Ronald G., 2018. "Capacitated path-aggregation constraint model for arc disruption in networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 225-238.
    19. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    20. Khan, Syed Abdul Rehman & Razzaq, Asif & Yu, Zhang & Shah, Adeel & Sharif, Arshian & Janjua, Laeeq, 2022. "Disruption in food supply chain and undernourishment challenges: An empirical study in the context of Asian countries," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124002349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.