IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v89y2023ics0038012123001891.html
   My bibliography  Save this article

A review on hypercube queuing model's extensions for practical applications

Author

Listed:
  • Iannoni, Ana P.
  • Morabito, Reinaldo

Abstract

In this study, we review some extensions of the well-known hypercube queuing model for applications to real life emergency services in server-to-customer systems. Given that many of these systems usually have their own distinct characteristics and dispatching policies, the classic hypercube model can be modified to incorporate these particularities allowing a more effective system analysis. In general, the hypercube model is extended by relaxing one or more of its limiting assumptions. We present different extended hypercube models of the literature, also motivated by our own experience with practical applications, pointing out the basic characteristics of these models. These extensions incorporate unique dispatching policies such as multiple dispatch hypercube models with identical and differentiated servers, dispatching policies using server reservation (cut-off model) to increase the availability of servers to high priority calls, hypercube models considering distinct priority policies to queued users, and hypercube models considering cross-trained servers that can provide two different kinds of emergency services (e.g., medical and fire control). To illustrate this review, describe how the equilibrium equations and the main performance statistics are evaluated, and provide useful insights into problems of interest, we use the smallest and non-trivial structures as systems’ examples, referred to as “toy-models”.

Suggested Citation

  • Iannoni, Ana P. & Morabito, Reinaldo, 2023. "A review on hypercube queuing model's extensions for practical applications," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:soceps:v:89:y:2023:i:c:s0038012123001891
    DOI: 10.1016/j.seps.2023.101677
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123001891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iannoni, Ana Paula & Chiyoshi, Fernando & Morabito, Reinaldo, 2015. "A spatially distributed queuing model considering dispatching policies with server reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 49-66.
    2. Rajan Batta & June M. Dolan & Nirup N. Krishnamurthy, 1989. "The Maximal Expected Covering Location Problem: Revisited," Transportation Science, INFORMS, vol. 23(4), pages 277-287, November.
    3. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    4. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    5. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    6. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    7. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    8. Morabito, Reinaldo & Chiyoshi, Fernando & Galvão, Roberto D., 2008. "Non-homogeneous servers in emergency medical systems: Practical applications using the hypercube queueing model," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 255-270, December.
    9. Rautenstrauss, Maximiliane & Martin, Layla & Minner, Stefan, 2023. "Ambulance dispatching during a pandemic: Tradeoffs of categorizing patients and allocating ambulances," European Journal of Operational Research, Elsevier, vol. 304(1), pages 239-254.
    10. F C Mendonça & R Morabito, 2001. "Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 261-270, March.
    11. Geroliminis, Nikolas & Karlaftis, Matthew G. & Skabardonis, Alexander, 2009. "A spatial queuing model for the emergency vehicle districting and location problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 798-811, August.
    12. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    13. de Souza, Regiane Máximo & Morabito, Reinaldo & Chiyoshi, Fernando Y. & Iannoni, Ana Paula, 2015. "Incorporating priorities for waiting customers in the hypercube queuing model with application to an emergency medical service system in Brazil," European Journal of Operational Research, Elsevier, vol. 242(1), pages 274-285.
    14. Christian Schaack & Richard C. Larson, 1986. "An N -Server Cutoff Priority Queue," Operations Research, INFORMS, vol. 34(2), pages 257-266, April.
    15. Richard C. Larson, 1975. "Approximating the Performance of Urban Emergency Service Systems," Operations Research, INFORMS, vol. 23(5), pages 845-868, October.
    16. Jonathan Halpern, 1977. "The Accuracy of Estimates for the Performance Criteria in Certain Emergency Service Queueing Systems," Transportation Science, INFORMS, vol. 11(3), pages 223-242, August.
    17. Hector Toro-Díaz & Maria E Mayorga & Laura A McLay & Hari K Rajagopalan & Cem Saydam, 2015. "Reducing disparities in large-scale emergency medical service systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(7), pages 1169-1181, July.
    18. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    19. Susan Budge & Armann Ingolfsson & Erhan Erkut, 2009. "Technical Note---Approximating Vehicle Dispatch Probabilities for Emergency Service Systems with Location-Specific Service Times and Multiple Units per Location," Operations Research, INFORMS, vol. 57(1), pages 251-255, February.
    20. Kenneth R. Chelst & Ziv Barlach, 1981. "Multiple Unit Dispatches in Emergency Services: Models to Estimate System Performance," Management Science, INFORMS, vol. 27(12), pages 1390-1409, December.
    21. Arthur J. Swersey & Louis Goldring & Earl D. Geyer, 1993. "Improving Fire Department Productivity: Merging Fire and Emergency Medical Units in New Haven," Interfaces, INFORMS, vol. 23(1), pages 109-129, February.
    22. Iannoni, Ana Paula & Morabito, Reinaldo, 2007. "A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 755-771, November.
    23. Soovin Yoon & Laura A. Albert & Veronica M. White, 2021. "A Stochastic Programming Approach for Locating and Dispatching Two Types of Ambulances," Transportation Science, INFORMS, vol. 55(2), pages 275-296, March.
    24. Richard C. Larson & Mark A. Mcknew, 1982. "Police Patrol-Initiated Activities Within a Systems Queueing Model," Management Science, INFORMS, vol. 28(7), pages 759-774, July.
    25. Akbar Karimi & Michel Gendreau & Vedat Verter, 2018. "Performance Approximation of Emergency Service Systems with Priorities and Partial Backups," Transportation Science, INFORMS, vol. 52(5), pages 1235-1252, October.
    26. J. P. Jarvis, 1985. "Approximating the Equilibrium Behavior of Multi-Server Loss Systems," Management Science, INFORMS, vol. 31(2), pages 235-239, February.
    27. Saydam, Cem & Aytug, Haldun, 2003. "Accurate estimation of expected coverage: revisited," Socio-Economic Planning Sciences, Elsevier, vol. 37(1), pages 69-80, March.
    28. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    29. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.
    30. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    31. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    2. Rautenstrauss, Maximiliane & Martin, Layla & Minner, Stefan, 2023. "Ambulance dispatching during a pandemic: Tradeoffs of categorizing patients and allocating ambulances," European Journal of Operational Research, Elsevier, vol. 304(1), pages 239-254.
    3. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    4. Iannoni, Ana Paula & Chiyoshi, Fernando & Morabito, Reinaldo, 2015. "A spatially distributed queuing model considering dispatching policies with server reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 49-66.
    5. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    6. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.
    7. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    8. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    9. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    11. Akdogan, M. Altan & Bayındır, Z. Pelin & Iyigun, Cem, 2023. "An analysis of ambulance location problem from an equity perspective," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    12. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    13. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    14. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.
    15. Liu, Han & Hua, Cheng & Lei, Chao, 2021. "Planning for time-varying volunteer firefighter systems under probabilistic service disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    16. Morabito, Reinaldo & Chiyoshi, Fernando & Galvão, Roberto D., 2008. "Non-homogeneous servers in emergency medical systems: Practical applications using the hypercube queueing model," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 255-270, December.
    17. Sardar Ansari & Laura Albert McLay & Maria E. Mayorga, 2017. "A Maximum Expected Covering Problem for District Design," Transportation Science, INFORMS, vol. 51(1), pages 376-390, February.
    18. de Souza, Regiane Máximo & Morabito, Reinaldo & Chiyoshi, Fernando Y. & Iannoni, Ana Paula, 2015. "Incorporating priorities for waiting customers in the hypercube queuing model with application to an emergency medical service system in Brazil," European Journal of Operational Research, Elsevier, vol. 242(1), pages 274-285.
    19. Atkinson, J.B. & Kovalenko, I.N. & Kuznetsov, N. & Mykhalevych, K.V., 2008. "A hypercube queueing loss model with customer-dependent service rates," European Journal of Operational Research, Elsevier, vol. 191(1), pages 223-239, November.
    20. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:89:y:2023:i:c:s0038012123001891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.