IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v84y2022ics0038012122002555.html
   My bibliography  Save this article

Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks

Author

Listed:
  • Elorza, María Eugenia
  • Moscoso, Nebel Silvana
  • Blanco, Anibal Manuel

Abstract

Mathematical models allow studying complex systems. In particular, optimal facility location models provide a sound framework to assess the performance of first-level of health care networks. In this work, a methodology founded on need/offer/demand quantification through a facility location-based mathematical model is proposed to assess the performance of existing networks of Primary Health Care Centers (PHCC) and assist in its re-design. The proposed re-design problem investigates the re-allocation of existing resources within the given infrastructure (existing PHCCs) to better satisfy the estimated health needs of the target population. This problem has not been widely addressed in the open literature despite its paramount importance in modern societies with fast demographic dynamics and constrained investment capacities. The model seeks to optimally assign the required type of service and the corresponding capacity to each PHCC (offer). The objective function to be maximized is the number of (needed) patients’ visits effectively covered by the network (demand). The following constraints are explicitly considered: i) geographic accessibility from need centers to PHCCs, ii) maximum delivery capacity of each service in each PHCC, and iii) total budget regarding fixed, variable, and relocation costs. The proposed methodology was applied to a medium-size city. Results show that the non-attended necessity can be reduced by introducing capacity modifications in the existing network. Moreover, different solutions are obtained if budgetary restrictions or minimum attention volume constraints are included. This reveals how model-based decision support tools can help health decision-makers assessing primary health care network performance.

Suggested Citation

  • Elorza, María Eugenia & Moscoso, Nebel Silvana & Blanco, Anibal Manuel, 2022. "Assessing performance in health care: A mathematical programming approach for the re-design of primary health care networks," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122002555
    DOI: 10.1016/j.seps.2022.101454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122002555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jérôme Baray & Gérard Cliquet, 2013. "Optimizing locations through a maximum covering/p-median hierarchical model:Maternity hospitals in France," Post-Print hal-01411572, HAL.
    2. Jérôme Baray & Gérard Cliquet, 2013. "Optimizing locations through a maximum covering/p-median hierarchical model: Maternity hospitals in France," Post-Print halshs-00768004, HAL.
    3. Lorenzo Jaime Yu Flores & Ramon Rafael Tonato & Gabrielle Ann dela Paz & Valerie Gilbert Ulep, 2021. "Optimizing health facility location for universal health care: A case study from the Philippines," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-13, September.
    4. Davari, Soheil & Kilic, Kemal & Naderi, Siamak, 2016. "A heuristic approach to solve the preventive health care problem with budget and congestion constraints," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 442-453.
    5. Jingshan Li & Andrea Matta & Evren Sahin, 2016. "Health Care Systems Engineering," Post-Print hal-01737960, HAL.
    6. Cocking, Cara & Flessa, Steffen & Reinelt, Gerhard, 2012. "Improving access to health facilities in Nouna district, Burkina Faso," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 164-172.
    7. Kerim Dogan & Mumtaz Karatas & Ertan Yakici, 2020. "A model for locating preventive health care facilities," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1091-1121, September.
    8. Baray, Jérôme & Cliquet, Gérard, 2013. "Optimizing locations through a maximum covering/p-median hierarchical model: Maternity hospitals in France," Journal of Business Research, Elsevier, vol. 66(1), pages 127-132.
    9. Varabyova, Yauheniya & Schreyögg, Jonas, 2013. "International comparisons of the technical efficiency of the hospital sector: Panel data analysis of OECD countries using parametric and non-parametric approaches," Health Policy, Elsevier, vol. 112(1), pages 70-79.
    10. Peter J H Hulshof & Nikky Kortbeek & Richard J Boucherie & Erwin W Hans & Piet J M Bakker, 2012. "Taxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MS," Health Systems, Taylor & Francis Journals, vol. 1(2), pages 129-175, December.
    11. Pereira, Miguel Alves & Camanho, Ana Santos & Figueira, José Rui & Marques, Rui Cunha, 2021. "Incorporating preference information in a range directional composite indicator: The case of Portuguese public hospitals," European Journal of Operational Research, Elsevier, vol. 294(2), pages 633-650.
    12. Pereira, Miguel Alves & Machete, Inês Freire & Ferreira, Diogo Cunha & Marques, Rui Cunha, 2020. "Using multi-criteria decision analysis to rank European health systems: The Beveridgian financing case," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    13. Pereira, Miguel Alves & Camanho, Ana Santos & Marques, Rui Cunha & Figueira, José Rui, 2021. "The convergence of the World Health Organization Member States regarding the United Nations’ Sustainable Development Goal ‘Good health and well-being’," Omega, Elsevier, vol. 104(C).
    14. Mousazadeh, M. & Torabi, S. Ali & Pishvaee, M.S. & Abolhassani, F., 2018. "Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 113-129.
    15. Jingshan Li & Andrea Matta & Evren Sahin, 2016. "Health Care Systems Engineering," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 1-4, June.
    16. Dong-Guen Kim & Yeong-Dae Kim, 2013. "A Lagrangian heuristic algorithm for a public healthcare facility location problem," Annals of Operations Research, Springer, vol. 206(1), pages 221-240, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karakaya, Şakir & Meral, Sedef, 2022. "A biobjective hierarchical location-allocation approach for the regionalization of maternal-neonatal care," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    2. Jang, Hoon & Lee, Jun-Ho, 2019. "A hierarchical location model for determining capacities of neonatal intensive care units in Korea," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    3. Areej Alhothali & Budoor Alwated & Kamil Faisal & Sultanah Alshammari & Reem Alotaibi & Nusaybah Alghanmi & Omaimah Bamasag & Manal Bin Yamin, 2022. "Location-Allocation Model to Improve the Distribution of COVID-19 Vaccine Centers in Jeddah City, Saudi Arabia," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    4. Zhengna Song & Tinggan Yan & Yunjian Ge, 2018. "Spatial Equilibrium Allocation of Urban Large Public General Hospitals Based on the Welfare Maximization Principle: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    5. Hoon Jang, 2019. "Designing capacity rollout plan for neonatal care service system in Korea," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 809-830, September.
    6. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    7. Pereira, Miguel Alves & Camanho, Ana Santos & Marques, Rui Cunha & Figueira, José Rui, 2021. "The convergence of the World Health Organization Member States regarding the United Nations’ Sustainable Development Goal ‘Good health and well-being’," Omega, Elsevier, vol. 104(C).
    8. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    9. Zhang, Cai Wen & Yang, Yuanhui, 2023. "Appraisal of regional hospital efficiency and healthcare quality in China: Impacts of subsidies and marketization," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    10. Erwin J. Delgado & Xavier Cabezas & Carlos Martin-Barreiro & Víctor Leiva & Fernando Rojas, 2022. "An Equity-Based Optimization Model to Solve the Location Problem for Healthcare Centers Applied to Hospital Beds and COVID-19 Vaccination," Mathematics, MDPI, vol. 10(11), pages 1-24, May.
    11. Vidoli, F. & Fusco, E. & Pignataro, G. & Guccio, C., 2024. "Multi-directional Robust Benefit of the Doubt model: An application to the measurement of the quality of acute care services in OECD countries," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    12. Matthew W. Potts & Angus Johnson & Seth Bullock, 2020. "Evaluating the complexity of engineered systems: A framework informed by a user case study," Systems Engineering, John Wiley & Sons, vol. 23(6), pages 707-723, November.
    13. Sagarkumar Hirpara & Monit Vaishnav & Pratik J. Parikh & Nan Kong & Priti Parikh, 2022. "Locating trauma centers considering patient safety," Health Care Management Science, Springer, vol. 25(2), pages 291-310, June.
    14. Soheil Davari, 2019. "The incremental cooperative design of preventive healthcare networks," Annals of Operations Research, Springer, vol. 272(1), pages 445-492, January.
    15. Honora Smith & Daniel Cakebread & Maria Battarra & Ben Shelbourne & Naseem Cassim & Lindi Coetzee, 2017. "Location of a hierarchy of HIV/AIDS test laboratories in an inbound hub network: case study in South Africa," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1068-1081, September.
    16. Mendoza-Gómez, Rodolfo & Ríos-Mercado, Roger Z., 2022. "Regionalization of primary health care units with multi-institutional collaboration," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    17. Pereira, Miguel Alves & Marques, Rui Cunha, 2022. "Is sunshine regulation the new prescription to brighten up public hospitals in Portugal?," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    18. Ketelhöhn, Niels & Sanz, Luis, 2016. "Healthcare management priorities in Latin America: Framework and responses," Journal of Business Research, Elsevier, vol. 69(9), pages 3835-3838.
    19. Feng Dong & Shengnan Zhang & Jiao Zhu & Jiaojiao Sun, 2021. "The Impact of the Integrated Development of AI and Energy Industry on Regional Energy Industry: A Case of China," IJERPH, MDPI, vol. 18(17), pages 1-24, August.
    20. Vidoli, F.; & Fusco, E.; & Pignataro, G.; & Guccio, C.;, 2023. "Multi-directional Robust Benefit of the Doubt model: a comprehensive measure for the quality of health care in OECD countries," Health, Econometrics and Data Group (HEDG) Working Papers 23/14, HEDG, c/o Department of Economics, University of York.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122002555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.