IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v84y2022ics0038012122001926.html
   My bibliography  Save this article

Trends and gaps in the literature of road network repair and restoration in the context of disaster response operations

Author

Listed:
  • Souza Almeida, Luana
  • Goerlandt, Floris
  • Pelot, Ronald

Abstract

Natural and man-made disasters can disrupt road networks. The post-disaster period is usually divided into short and long-term response phases. In the short-term phase, blocked roads can jeopardize emergency operations such as search-and-rescue, evacuation of victims, and the distribution of emergency supplies. The detritus may pose an environmental challenge in the long-term, as the rubble must be properly collected, disposed of, and recycled. Optimization models designed to schedule repair and restoration activities and determine the repair crews' routes are helpful to give insights to decision-makers on how to improve emergency response plans. This article presents a literature review on short and long-term network models designed for roads repair and restoration. This review identifies the trends in publications, solution approaches, frequency of locations and type of disaster in the case studies, and the size of the networks. In addition, a qualitative analysis of the models’ characteristics, such as the type of network, uncertainties, and interdependencies, is presented. A discussion is provided to indicate future research directions. Among these, future research should focus on the combination of roads repair and restoration with other emergency activities such as relief distribution.

Suggested Citation

  • Souza Almeida, Luana & Goerlandt, Floris & Pelot, Ronald, 2022. "Trends and gaps in the literature of road network repair and restoration in the context of disaster response operations," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122001926
    DOI: 10.1016/j.seps.2022.101398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122001926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aakil M. Caunhye & Nazli Yonca Aydin & H. Sebnem Duzgun, 2020. "Robust post-disaster route restoration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1055-1087, December.
    2. Sanci, Ece & Daskin, Mark S., 2021. "An integer L-shaped algorithm for the integrated location and network restoration problem in disaster relief," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 152-184.
    3. Moreno, Alfredo & Munari, Pedro & Alem, Douglas, 2019. "A branch-and-Benders-cut algorithm for the Crew Scheduling and Routing Problem in road restoration," European Journal of Operational Research, Elsevier, vol. 275(1), pages 16-34.
    4. Kasin Ransikarbum & Scott J. Mason, 2016. "Multiple-objective analysis of integrated relief supply and network restoration in humanitarian logistics operations," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 49-68, January.
    5. Shuanglin Li & Kok Lay Teo, 2019. "Post-disaster multi-period road network repair: work scheduling and relief logistics optimization," Annals of Operations Research, Springer, vol. 283(1), pages 1345-1385, December.
    6. Kasaei, Maziar & Salman, F. Sibel, 2016. "Arc routing problems to restore connectivity of a road network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 177-206.
    7. Ransikarbum, Kasin & Mason, Scott J., 2016. "Goal programming-based post-disaster decision making for integrated relief distribution and early-stage network restoration," International Journal of Production Economics, Elsevier, vol. 182(C), pages 324-341.
    8. Ching-Hui Tang & Shangyao Yan & Chia-Wei Chang, 2009. "Short-term work team scheduling models for effective road repair and management," Transportation Planning and Technology, Taylor & Francis Journals, vol. 32(3), pages 289-311, April.
    9. Tuzun Aksu, Dilek & Ozdamar, Linet, 2014. "A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 56-67.
    10. Athena Masson, 2014. "The extratropical transition of Hurricane Igor and the impacts on Newfoundland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 617-632, June.
    11. Moreno, Alfredo & Alem, Douglas & Gendreau, Michel & Munari, Pedro, 2020. "The heterogeneous multicrew scheduling and routing problem in road restoration," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 24-58.
    12. Sayarshad, Hamid R. & Du, Xinpi & Gao, H. Oliver, 2020. "Dynamic post-disaster debris clearance problem with re-positioning of clearance equipment items under partially observable information," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 352-372.
    13. Akbari, Vahid & Salman, F. Sibel, 2017. "Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity," European Journal of Operational Research, Elsevier, vol. 257(2), pages 625-640.
    14. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    15. Sahin, Halenur & Kara, Bahar Yetis & Karasan, Oya Ekin, 2016. "Debris removal during disaster response: A case for Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 49-59.
    16. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    17. Dirk Briskorn & Alf Kimms & Denis Olschok, 2020. "Simultaneous planning for disaster road clearance and distribution of relief goods: a basic model and an exact solution method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 591-619, September.
    18. Nihal Berktaş & Bahar Yetiş Kara & Oya Ekin Karaşan, 2016. "Solution methodologies for debris removal in disaster response," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 403-445, September.
    19. Sanci, Ece & Daskin, Mark S., 2019. "Integrating location and network restoration decisions in relief networks under uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 335-350.
    20. Celso Satoshi Sakuraba & Andréa Cynthia Santos & Christian Prins & Lucie Bouillot & Arnaud Durand & Bernard Allenbach, 2016. "Road network emergency accessibility planning after a major earthquake," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 381-402, September.
    21. Ulusan, Aybike & Ergun, Özlem, 2021. "Approximate dynamic programming for network recovery problems with stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    22. Akbari, Vahid & Shiri, Davood & Sibel Salman, F., 2021. "An online optimization approach to post-disaster road restoration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 1-25.
    23. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2019. "Minimizing latency in post-disaster road clearance operations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1098-1112.
    24. Andie Pramudita & Eiichi Taniguchi, 2014. "Model of debris collection operation after disasters and its application in urban area," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(2), pages 218-243, July.
    25. Özdamar, Linet & Tüzün Aksu, Dilek & Ergüneş, Biket, 2014. "Coordinating debris cleanup operations in post disaster road networks," Socio-Economic Planning Sciences, Elsevier, vol. 48(4), pages 249-262.
    26. Iloglu, Suzan & Albert, Laura A., 2020. "A maximal multiple coverage and network restoration problem for disaster recovery," Operations Research Perspectives, Elsevier, vol. 7(C).
    27. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    28. Bert Van Wee & David Banister, 2016. "How to Write a Literature Review Paper?," Transport Reviews, Taylor & Francis Journals, vol. 36(2), pages 278-288, March.
    29. Ece Aslan & Melih Çelik, 2019. "Pre-positioning of relief items under road/facility vulnerability with concurrent restoration and relief transportation," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 847-868, August.
    30. Maya Duque, Pablo A. & Dolinskaya, Irina S. & Sörensen, Kenneth, 2016. "Network repair crew scheduling and routing for emergency relief distribution problem," European Journal of Operational Research, Elsevier, vol. 248(1), pages 272-285.
    31. Melih Çelik & Özlem Ergun & Pınar Keskinocak, 2015. "The Post-Disaster Debris Clearance Problem Under Incomplete Information," Operations Research, INFORMS, vol. 63(1), pages 65-85, February.
    32. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akbari, Vahid & Shiri, Davood & Sibel Salman, F., 2021. "An online optimization approach to post-disaster road restoration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 1-25.
    2. Moreno, Alfredo & Alem, Douglas & Gendreau, Michel & Munari, Pedro, 2020. "The heterogeneous multicrew scheduling and routing problem in road restoration," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 24-58.
    3. Hosseini, Yaser & Mohammadi, Reza Karami & Yang, Tony Y., 2024. "A comprehensive approach in post-earthquake blockage prediction of urban road network and emergency resilience optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2022. "Routing multiple work teams to minimize latency in post-disaster road network restoration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 237-254.
    5. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2019. "Minimizing latency in post-disaster road clearance operations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1098-1112.
    6. Shuanglin Li & Kok Lay Teo, 2019. "Post-disaster multi-period road network repair: work scheduling and relief logistics optimization," Annals of Operations Research, Springer, vol. 283(1), pages 1345-1385, December.
    7. Nabavi, S.M. & Vahdani, Behnam & Nadjafi, B. Afshar & Adibi, M.A., 2022. "Synchronizing victim evacuation and debris removal: A data-driven robust prediction approach," European Journal of Operational Research, Elsevier, vol. 300(2), pages 689-712.
    8. Sayarshad, Hamid R. & Du, Xinpi & Gao, H. Oliver, 2020. "Dynamic post-disaster debris clearance problem with re-positioning of clearance equipment items under partially observable information," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 352-372.
    9. Farzaneh, Mohammad Amin & Rezapour, Shabnam & Baghaian, Atefe & Amini, M. Hadi, 2023. "An integrative framework for coordination of damage assessment, road restoration, and relief distribution in disasters," Omega, Elsevier, vol. 115(C).
    10. Juliette García-Alviz & Gina Galindo & Julián Arellana & Ruben Yie-Pinedo, 2021. "Planning road network restoration and relief distribution under heterogeneous road disruptions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 941-981, December.
    11. Sanci, Ece & Daskin, Mark S., 2019. "Integrating location and network restoration decisions in relief networks under uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 335-350.
    12. de Castro Pena, Guilherme & Santos, Andréa Cynthia & Prins, Christian, 2023. "Solving the integrated multi-period scheduling routing problem for cleaning debris in the aftermath of disasters," European Journal of Operational Research, Elsevier, vol. 306(1), pages 156-172.
    13. Aakil M. Caunhye & Nazli Yonca Aydin & H. Sebnem Duzgun, 2020. "Robust post-disaster route restoration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1055-1087, December.
    14. Moreno, Alfredo & Munari, Pedro & Alem, Douglas, 2019. "A branch-and-Benders-cut algorithm for the Crew Scheduling and Routing Problem in road restoration," European Journal of Operational Research, Elsevier, vol. 275(1), pages 16-34.
    15. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    16. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    17. Sakineh Lakzaei & Donya Rahmani & Babak Mohamadpour Tosarkani & Sepideh Nasiri, 2023. "Integrated optimal scheduling and routing of repair crew and relief vehicles after disaster: a novel hybrid solution approach," Annals of Operations Research, Springer, vol. 328(2), pages 1495-1522, September.
    18. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    19. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    20. Akbari, Vahid & Shiri, Davood, 2021. "Weighted online minimum latency problem with edge uncertainty," European Journal of Operational Research, Elsevier, vol. 295(1), pages 51-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122001926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.