IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v74y2021ics0038012120307862.html
   My bibliography  Save this article

Contribution to the field of traffic assignment: A boundedly rational user equilibrium model with uncertain supply and demand

Author

Listed:
  • Xu, Junxiang
  • Zhang, Jin
  • Guo, Jingni

Abstract

Since the existing models and algorithms cannot well deal with the traffic assignment problems under uncertain supply and demand conditions, this paper proposes a traffic assignment model based on cumulative prospect theory. Firstly, the cumulative prospect theory is extended on the basis of a large number of numerical analysis experiments and the road impedance function of road segments is improved. Then, by setting the reference point of fuzzy generalized cost and the reference point of staged dynamic risk degree of road segment, the comprehensive cumulative prospect value (CCPV) function is improved, a boundedly rational user equilibrium (BRUE) model under uncertain supply and demand conditions is constructed, and an isolation niche genetic simulated annealing algorithm (INGSAA) is designed to solve the model. Finally, taking the road network of the Sichuan-Tibet region in China as an example, the processes of boundedly rational equilibrium under the fixed and variable network structure are investigated, and the relevant parameters are analyzed. The research results verify that the BRUE model based on the extended cumulative prospect theory provides a good idea for solving the problem of traffic assignment under uncertain supply and demand conditions, which is of great theoretical significance and application value.

Suggested Citation

  • Xu, Junxiang & Zhang, Jin & Guo, Jingni, 2021. "Contribution to the field of traffic assignment: A boundedly rational user equilibrium model with uncertain supply and demand," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:soceps:v:74:y:2021:i:c:s0038012120307862
    DOI: 10.1016/j.seps.2020.100949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012120307862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2020.100949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li-Jun Tian & Hai-Jun Huang & Zi-You Gao, 2012. "A Cumulative Perceived Value-Based Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on Arrival Time," Networks and Spatial Economics, Springer, vol. 12(4), pages 589-608, December.
    2. Xu, Hongli & Lou, Yingyan & Yin, Yafeng & Zhou, Jing, 2011. "A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 311-328, February.
    3. Heinz Spiess, 1990. "Technical Note—Conical Volume-Delay Functions," Transportation Science, INFORMS, vol. 24(2), pages 153-158, May.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Byung Chung & Tao Yao & Bo Zhang, 2012. "Dynamic Traffic Assignment under Uncertainty: A Distributional Robust Chance-Constrained Approach," Networks and Spatial Economics, Springer, vol. 12(1), pages 167-181, March.
    6. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    7. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    8. Li, Xue-yan & Li, Xue-mei & Yang, Lingrun & Li, Jing, 2018. "Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 77-92.
    9. Lo, Hong K. & Luo, X.W. & Siu, Barbara W.Y., 2006. "Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 792-806, November.
    10. Lou, Yingyan & Yin, Yafeng & Lawphongpanich, Siriphong, 2010. "Robust congestion pricing under boundedly rational user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 15-28, January.
    11. Zhang, Chao & Chen, Xiaojun & Sumalee, Agachai, 2011. "Robust Wardrop's user equilibrium assignment under stochastic demand and supply: Expected residual minimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 534-552, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zheng & Hensher, David A. & Zeng, Jingjing, 2022. "Travel choice behaviour under uncertainty in real-market settings: A source-dependent utility approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangfeng Ji & Xuegang (Jeff) Ban & Mengtian Li & Jian Zhang & Bin Ran, 2017. "Non-expected Route Choice Model under Risk on Stochastic Traffic Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 777-807, September.
    2. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    3. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    4. Xinming Zang & Zhenqi Guo & Jingai Ma & Yongguang Zhong & Xiangfeng Ji, 2021. "Target-Oriented User Equilibrium Considering Travel Time, Late Arrival Penalty, and Travel Cost on the Stochastic Tolled Traffic Network," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
    5. Xu, Hongli & Lou, Yingyan & Yin, Yafeng & Zhou, Jing, 2011. "A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 311-328, February.
    6. Xiangfeng Ji & Xiaoyu Ao, 2021. "Travelers’ Bi-Attribute Decision Making on the Risky Mode Choice with Flow-Dependent Salience Theory," Sustainability, MDPI, vol. 13(7), pages 1-24, April.
    7. Wang, Judith Y.T. & Ehrgott, Matthias & Chen, Anthony, 2014. "A bi-objective user equilibrium model of travel time reliability in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 4-15.
    8. Geng, Kexin & Wang, Yacan & Cherchi, Elisabetta & Guarda, Pablo, 2023. "Commuter departure time choice behavior under congestion charge: Analysis based on cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    9. Li-Jun Tian & Hai-Jun Huang & Zi-You Gao, 2012. "A Cumulative Perceived Value-Based Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on Arrival Time," Networks and Spatial Economics, Springer, vol. 12(4), pages 589-608, December.
    10. Li, Xue-yan & Li, Xue-mei & Yang, Lingrun & Li, Jing, 2018. "Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 77-92.
    11. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    12. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    13. Li, Xue-yan & Li, Xue-mei & Li, Xue-wei & Qiu, He-ting, 2017. "Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 405-419.
    14. Xueyan Li & Jing Li, 2021. "A freight transport price optimization model with multi bounded-rational customers," Transportation, Springer, vol. 48(1), pages 477-504, February.
    15. Qinghui Xu & Xiangfeng Ji, 2020. "User Equilibrium Analysis Considering Travelers’ Context-Dependent Route Choice Behavior on the Risky Traffic Network," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    16. Chen, Anthony & Zhou, Zhong & Lam, William H.K., 2011. "Modeling stochastic perception error in the mean-excess traffic equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1619-1640.
    17. Zhou, Yuyang & Wang, Peiyu & Zheng, Shuyan & Zhao, Minhe & Lam, William H.K. & Chen, Anthony & Sze, N.N. & Chen, Yanyan, 2024. "Modeling dynamic travel mode choices using cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    18. Gao, Kun & Sun, Lijun & Yang, Ying & Meng, Fanyu & Qu, Xiaobo, 2021. "Cumulative prospect theory coupled with multi-attribute decision making for modeling travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 1-21.
    19. Yan Bao & Fangyu Chang & Jinkai Shi & Pengcheng Yin & Weige Zhang & David Wenzhong Gao, 2022. "An Approach for Pricing of Charging Service Fees in an Electric Vehicle Public Charging Station Based on Prospect Theory," Energies, MDPI, vol. 15(14), pages 1-20, July.
    20. Guang Yang & Xinwang Liu, 2018. "A commuter departure-time model based on cumulative prospect theory," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 285-307, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:74:y:2021:i:c:s0038012120307862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.