IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v66y2023ics0275531923001654.html
   My bibliography  Save this article

Asymmetric and time-frequency volatility connectedness between China and international crude oil markets with portfolio implications

Author

Listed:
  • Liu, Zhenhua
  • Ji, Qiang
  • Zhai, Pengxiang
  • Ding, Zhihua

Abstract

This paper tries to examine asymmetric and time-frequency volatility connectedness between the Chinese crude oil futures market and international oil benchmarks. To this end, we separate the realized volatility as bad or good volatility and decompose the aggregate volatility connectedness among these oil markets into the short-, medium-, and long-term components. Our results first show that these crude oil markets are highly connected, whereas the Chinese crude oil futures market is a net receiver in the volatility system. Second, the spillover effect caused by bad volatility is significantly different from that of good volatility, revealing significant asymmetry in the volatility spillovers. Third, the volatility spillovers in the short-term frequency band account for the most of total volatility spillovers. Finally, our results prove that the volatility connectedness information among different oil markets helps design trading strategies and shed light on the arbitrage opportunities in the Chinese new crude oil futures market.

Suggested Citation

  • Liu, Zhenhua & Ji, Qiang & Zhai, Pengxiang & Ding, Zhihua, 2023. "Asymmetric and time-frequency volatility connectedness between China and international crude oil markets with portfolio implications," Research in International Business and Finance, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s0275531923001654
    DOI: 10.1016/j.ribaf.2023.102039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531923001654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2023.102039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Ian Dew-Becker & Stefano Giglio, 2016. "Asset Pricing in the Frequency Domain: Theory and Empirics," The Review of Financial Studies, Society for Financial Studies, vol. 29(8), pages 2029-2068.
    3. Fulvio Ortu & Andrea Tamoni & Claudio Tebaldi, 2013. "Long-Run Risk and the Persistence of Consumption Shocks," The Review of Financial Studies, Society for Financial Studies, vol. 26(11), pages 2876-2915.
    4. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    5. Nishimura, Yusaku & Sun, Bianxia, 2018. "The intraday volatility spillover index approach and an application in the Brexit vote," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 241-253.
    6. Sun, Xiaolei & Chen, Xiuwen & Wang, Jun & Li, Jianping, 2020. "Multi-scale interactions between economic policy uncertainty and oil prices in time-frequency domains," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    7. Weiner, R.J., 1991. "Is the World Oil Market "One Great Pool?"," Papers 9120, Laval - Recherche en Energie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kočenda, Evžen & Moravcová, Michala, 2024. "Frequency volatility connectedness and portfolio hedging of U.S. energy commodities," Research in International Business and Finance, Elsevier, vol. 69(C).
    2. Wen, Danyan & Wang, Huihui & Wang, Yudong & Xiao, Jihong, 2024. "Crude oil futures and the short-term price predictability of petroleum products," Energy, Elsevier, vol. 307(C).
    3. Cui, Jinxin & Alshater, Muneer M. & Mensi, Walid, 2023. "Higher-order moment risk spillovers and optimal portfolio strategies in global oil markets," Resources Policy, Elsevier, vol. 86(PA).
    4. Mensi, Walid & Ahmadian-Yazdi, Farzaneh & Al-Kharusi, Sami & Roudari, Soheil & Kang, Sang Hoon, 2024. "Extreme Connectedness Across Chinese Stock and Commodity Futures Markets," Research in International Business and Finance, Elsevier, vol. 70(PA).
    5. Zhu, Bangzhu & Tian, Chao & Wang, Ping, 2024. "Exploring the relationship between Chinese crude oil futures market efficiency and market micro characteristics," Energy Economics, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brož, Václav & Kočenda, Evžen, 2022. "Mortgage-related bank penalties and systemic risk among U.S. banks," Journal of International Money and Finance, Elsevier, vol. 122(C).
    2. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    3. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    4. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    5. He, Xie & Hamori, Shigeyuki, 2021. "Is volatility spillover enough for investor decisions? A new viewpoint from higher moments," Journal of International Money and Finance, Elsevier, vol. 116(C).
    6. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2022. "Long-memory and volatility spillovers across petroleum futures," Energy, Elsevier, vol. 243(C).
    7. Amar, Amine Ben & Goutte, Stéphane & Isleimeyyeh, Mohammad & Benkraiem, Ramzi, 2022. "Commodity markets dynamics: What do cross-commodities over different nearest-to-maturities tell us?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    8. Ioannis Chatziantoniou & David Gabauer & Rangan Gupta, 2021. "Integration and Risk Transmission in the Market for Crude Oil: A Time-Varying Parameter Frequency Connectedness Approach," Working Papers 202147, University of Pretoria, Department of Economics.
    9. Abdollahi, Hooman & Fjesme, Sturla L. & Sirnes, Espen, 2024. "Measuring market volatility connectedness to media sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    10. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2019. "Time-Varying General Dynamic Factor Models and the Measurement of Financial Connectedness," Working Papers ECARES 2019-09, ULB -- Universite Libre de Bruxelles.
    11. Huifu Nong, 2024. "Connectedness and risk transmission of China’s stock and currency markets with global commodities," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-24, February.
    12. Afees A. Salisu & Taofeek O. Ayinde, 2018. "Testing for spillovers in naira exchange rates: The role of electioneering & global financial crisis," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 18(4), pages 341-348, December.
    13. Jiasha Fu & Hui Qiao, 2022. "The Time-Varying Connectedness Between China’s Crude Oil Futures and International Oil Markets: A Return and Volatility Spillover Analysis," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 341-376, December.
    14. Balcilar, Mehmet & Ozdemir, Huseyin & Agan, Busra, 2022. "Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    15. Barigozzi, Matteo & Hallin, Marc & Soccorsi, Stefano & von Sachs, Rainer, 2021. "Time-varying general dynamic factor models and the measurement of financial connectedness," Journal of Econometrics, Elsevier, vol. 222(1), pages 324-343.
    16. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2022. "The relationship between carbon-intensive fuel and renewable energy stock prices under the emissions trading system," Energy Economics, Elsevier, vol. 114(C).
    17. Lee, Chien-Chiang & Zhou, Hegang & Xu, Chao & Zhang, Xiaoming, 2023. "Dynamic spillover effects among international crude oil markets from the time-frequency perspective," Resources Policy, Elsevier, vol. 80(C).
    18. Li, Yanshuang & Zhuang, Xintian & Wang, Jian, 2021. "Analysis of the cross-region risk contagion effect in stock market based on volatility spillover networks: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    19. Xiaoyong Xiao & Jing Huang, 2018. "Dynamic Connectedness of International Crude Oil Prices: The Diebold–Yilmaz Approach," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    20. Pengxiang Zhai & Fei Wu & Qiang Ji & Duc Khuong Nguyen, 2024. "From fears to recession? Time‐frequency risk contagion among stock and credit default swap markets during the COVID pandemic," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 551-580, January.

    More about this item

    Keywords

    Oil market; Time-frequency domain; Volatility spillovers; High-frequency data; Trading strategy;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s0275531923001654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.