IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v93y2024ipbp981-993.html
   My bibliography  Save this article

Deep reinforcement learning for pairs trading: Evidence from China black series futures

Author

Listed:
  • Guo, Minjia
  • Liu, Jianhe
  • Luo, Ziping
  • Han, Xiao

Abstract

Pair trading is one of the main methods of statistical arbitrage, mainly by taking advantage of the temporary price anomalies between related financial products with long-term equilibrium relationships to obtain arbitrage opportunities. In this paper, based on the co-integration method for the selection of allotment, the deep reinforcement learning method is integrated. The deep reinforcement learning method establishes an autonomous learning model and develops paired trading rules under different cycles. At the same time, the deep neural network model is used to implement the learning and training algorithm. This paper uses the data of Shanghai Commodity Exchange and Dalian Commodity Exchange on black futures, and the period is from January 2, 2014 to December 31, 2021. Three different periods were set for five models, namely simple threshold method (ST), simple threshold method based on pairwise cointegration (CA-ST), simple threshold method based on tripartite Cointegration (CA-ST-ALL), deep reinforcement learning method (DRL), and Deep reinforcement learning method based on pairwise cointegration (CA-DRL), and economic indicators were compared. The final results show that, combining the results of the three time periods, the deep reinforcement learning method based on pairwise cointegration performs better regarding return and risk control, validating the feasibility of deep reinforcement learning in China's future market.

Suggested Citation

  • Guo, Minjia & Liu, Jianhe & Luo, Ziping & Han, Xiao, 2024. "Deep reinforcement learning for pairs trading: Evidence from China black series futures," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 981-993.
  • Handle: RePEc:eee:reveco:v:93:y:2024:i:pb:p:981-993
    DOI: 10.1016/j.iref.2024.05.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056024003307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2024.05.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
    2. Liu, Jianhe & Lu, Luze & Zong, Xiangyu & Xie, Baao, 2023. "Nonlinear relationships in soybean commodities Pairs trading-test by deep reinforcement learning," Finance Research Letters, Elsevier, vol. 58(PC).
    3. Nicolas Huck & Komivi Afawubo, 2015. "Pairs trading and selection methods: is cointegration superior?," Applied Economics, Taylor & Francis Journals, vol. 47(6), pages 599-613, February.
    4. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    5. Kang, Haijun & Zong, Xiangyu & Wang, Jianyong & Chen, Haonan, 2023. "Binary gravity search algorithm and support vector machine for forecasting and trading stock indices," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 507-526.
    6. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    7. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    8. Taewook Kim & Ha Young Kim, 2019. "Optimizing the Pairs-Trading Strategy Using Deep Reinforcement Learning with Trading and Stop-Loss Boundaries," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    9. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    10. Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2016. "The profitability of pairs trading strategies: distance, cointegration and copula methods," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1541-1558, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
    2. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    3. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    4. Marianna Brunetti & Roberta De Luca, 2023. "Pairs trading in the index options market," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 145-173, March.
    5. Danni Chen & Jing Cui & Yan Gao & Leilei Wu, 2017. "Pairs trading in Chinese commodity futures markets: an adaptive cointegration approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(5), pages 1237-1264, December.
    6. GholamReza Keshavarz Haddad & Hassan Talebi, 2023. "The profitability of pair trading strategy in stock markets: Evidence from Toronto stock exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 193-207, January.
    7. Tian-Shyr Dai & Yi-Jen Luo & Hao-Han Chang & Chu-Lan Kao & Kuan-Lun Wang & Liang-Chih Liu, 2024. "Asymptotic analyses for trend-stationary pairs trading strategy in high-frequency trading," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1391-1411, November.
    8. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    9. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    10. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    11. Baiquan Ma & Robert Ślepaczuk, 2022. "The profitability of pairs trading strategies on Hong-Kong stock market: distance, cointegration, and correlation methods," Working Papers 2022-02, Faculty of Economic Sciences, University of Warsaw.
    12. Andreas Mikkelsen, 2018. "Pairs trading: the case of Norwegian seafood companies," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 303-318, January.
    13. Marianna Brunetti & Roberta de Luca, 2022. "Sensitivity of profitability in cointegration-based pairs trading," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0090, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    14. Jeff Stephenson & Bruce Vanstone & Tobias Hahn, 2021. "A Unifying Model for Statistical Arbitrage: Model Assumptions and Empirical Failure," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 943-964, December.
    15. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    16. Marianna Brunetti & Roberta De Luca, 2023. "Pre-selection in cointegration-based pairs trading," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1611-1640, December.
    17. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    18. Ariel Neufeld & Julian Sester & Daiying Yin, 2022. "Detecting data-driven robust statistical arbitrage strategies with deep neural networks," Papers 2203.03179, arXiv.org, revised Feb 2024.
    19. Stübinger, Johannes, 2018. "Statistical arbitrage with optimal causal paths on high-frequencydata of the S&P 500," FAU Discussion Papers in Economics 01/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    20. Sabino da Silva, Fernando A.B. & Ziegelmann, Flavio A. & Caldeira, João F., 2023. "A pairs trading strategy based on mixed copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 16-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:93:y:2024:i:pb:p:981-993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.