IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v93y2024ipbp981-993.html
   My bibliography  Save this article

Deep reinforcement learning for pairs trading: Evidence from China black series futures

Author

Listed:
  • Guo, Minjia
  • Liu, Jianhe
  • Luo, Ziping
  • Han, Xiao

Abstract

Pair trading is one of the main methods of statistical arbitrage, mainly by taking advantage of the temporary price anomalies between related financial products with long-term equilibrium relationships to obtain arbitrage opportunities. In this paper, based on the co-integration method for the selection of allotment, the deep reinforcement learning method is integrated. The deep reinforcement learning method establishes an autonomous learning model and develops paired trading rules under different cycles. At the same time, the deep neural network model is used to implement the learning and training algorithm. This paper uses the data of Shanghai Commodity Exchange and Dalian Commodity Exchange on black futures, and the period is from January 2, 2014 to December 31, 2021. Three different periods were set for five models, namely simple threshold method (ST), simple threshold method based on pairwise cointegration (CA-ST), simple threshold method based on tripartite Cointegration (CA-ST-ALL), deep reinforcement learning method (DRL), and Deep reinforcement learning method based on pairwise cointegration (CA-DRL), and economic indicators were compared. The final results show that, combining the results of the three time periods, the deep reinforcement learning method based on pairwise cointegration performs better regarding return and risk control, validating the feasibility of deep reinforcement learning in China's future market.

Suggested Citation

  • Guo, Minjia & Liu, Jianhe & Luo, Ziping & Han, Xiao, 2024. "Deep reinforcement learning for pairs trading: Evidence from China black series futures," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 981-993.
  • Handle: RePEc:eee:reveco:v:93:y:2024:i:pb:p:981-993
    DOI: 10.1016/j.iref.2024.05.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056024003307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2024.05.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:93:y:2024:i:pb:p:981-993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.