IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v93y2024ipbp777-796.html
   My bibliography  Save this article

Internal trade and environmental policy effectiveness in developing countries: A binary endogenous growth model with regional Heterogeneity

Author

Listed:
  • Zhou, Zejia
  • Wu, Desheng

Abstract

The shift of environmental pollution from developed to developing countries is largely induced by global labor and trade trends. Unlike their developed counterparts, developing countries face more pronounced regional disparities in social development within the realm of environmental governance. This paper proposes a binary endogenous model to assess the implications of environmental policies on such developing nations with sizable regional disparities. The model enhances the precision in simulating real-world ramifications of environmental policy implementation. It reveals that the 'pollution haven' effect extends beyond just the relocation of pollutant-generating industries to less developed regions; it also leads to the shipment of products fabricated using environmentally-degrading processes from less developed to developed regions, thereby undermining environmental regulation. Furthermore, the model's results were juxtaposed with China's increasingly stringent national environmental protection policy, adopted since 2000. The study confirms that environmental degradation has a substantial spatial spillover effect positively correlated with internal trade volume. The paper's conclusions assist in offering a new evaluative framework for the ensuing examination of environmental policy practicality in developing countries. It also recommends policy-making tools for enhancing the effectiveness of environmental regulations in these regions, such as limiting internal trade of polluting products alongside environmental levies and subsidies.

Suggested Citation

  • Zhou, Zejia & Wu, Desheng, 2024. "Internal trade and environmental policy effectiveness in developing countries: A binary endogenous growth model with regional Heterogeneity," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 777-796.
  • Handle: RePEc:eee:reveco:v:93:y:2024:i:pb:p:777-796
    DOI: 10.1016/j.iref.2024.04.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056024002910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2024.04.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Parente Stephen L., 1994. "Technology Adoption, Learning-by-Doing, and Economic Growth," Journal of Economic Theory, Elsevier, vol. 63(2), pages 346-369, August.
    3. Arik Levinson & M. Scott Taylor, 2008. "Unmasking The Pollution Haven Effect," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(1), pages 223-254, February.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. Pradyot Ranjan Jena, 2018. "Does trade liberalization create more pollution? Evidence from a panel regression analysis across the states of India," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 861-877, October.
    6. Michael Greenstone & Guojun He & Ruixue Jia & Tong Liu, 2022. "Can Technology Solve the Principal-Agent Problem? Evidence from China's War on Air Pollution," American Economic Review: Insights, American Economic Association, vol. 4(1), pages 54-70, March.
    7. Filiou, Despoina & Kesidou, Effie & Wu, Lichao, 2023. "Are smart cities green? The role of environmental and digital policies for Eco-innovation in China," World Development, Elsevier, vol. 165(C).
    8. Naegele, Helene & Zaklan, Aleksandar, 2019. "Does the EU ETS cause carbon leakage in European manufacturing?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 93, pages 125-147.
    9. Holladay, J. Scott & Mohsin, Mohammed & Pradhan, Shreekar, 2018. "Emissions leakage, environmental policy and trade frictions," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 95-113.
    10. Bernardino Adão & Borghan N. Narajabad & Ted Temzelides, 2022. "Renewable Technology Adoption Costs and Economic Growth," Finance and Economics Discussion Series 2022-045, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    2. Naegele, Helene & Zaklan, Aleksandar, 2019. "Does the EU ETS cause carbon leakage in European manufacturing?," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 125-147.
    3. Tol, Richard S.J., 2017. "The structure of the climate debate," Energy Policy, Elsevier, vol. 104(C), pages 431-438.
    4. Francesco S. Bellelli & Ankai Xu, 2024. "The Impact of Environmental Measures on Trade and Innovation: Evidence from the WTO Environmental Database (EDB)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(10), pages 2629-2682, October.
    5. Chung, Sunghoon, 2014. "Environmental regulation and foreign direct investment: Evidence from South Korea," Journal of Development Economics, Elsevier, vol. 108(C), pages 222-236.
    6. Michael Nippa & Sanjay Patnaik & Markus Taussig, 2021. "MNE responses to carbon pricing regulations: Theory and evidence," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(5), pages 904-929, July.
    7. Pegels, Anna & Altenburg, Tilman, 2020. "Latecomer development in a “greening” world: Introduction to the Special Issue," World Development, Elsevier, vol. 135(C).
    8. Peng Li & Yaofu Ouyang, 2020. "Technical Change and Green Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 271-298, July.
    9. Eskander, Shaikh & Fankhauser, Samuel, 2021. "The impact of climate legislation on trade-related carbon emissions, 1997–2017," LSE Research Online Documents on Economics 111509, London School of Economics and Political Science, LSE Library.
    10. Bellelli, Francesco S. & Xu, Ankai, 2022. "How do environmental policies affect green innovation and trade? Evidence from the WTO Environmental Database (EDB)," WTO Staff Working Papers ERSD-2022-3, World Trade Organization (WTO), Economic Research and Statistics Division.
    11. Wu, Libo & Zhou, Ying & Qian, Haoqi, 2022. "Global actions under the Paris agreement: Tracing the carbon leakage flow and pursuing countermeasures," Energy Economics, Elsevier, vol. 106(C).
    12. Shaikh M. S. U. Eskander & Sam Fankhauser, 2023. "The Impact of Climate Legislation on Trade-Related Carbon Emissions 1996–2018," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 167-194, May.
    13. Sager, Lutz, 2023. "The global consumer incidence of carbon pricing: Evidence from trade," Energy Economics, Elsevier, vol. 127(PB).
    14. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    15. Febi Jensen & Hans Lööf & Andreas Stephan, 2020. "New ventures in Cleantech: Opportunities, capabilities and innovation outcomes," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 902-917, March.
    16. Moritz Bohland & Sebastian Schwenen, 2020. "Technology Policy and Market Structure: Evidence from the Power Sector," Discussion Papers of DIW Berlin 1856, DIW Berlin, German Institute for Economic Research.
    17. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    18. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    19. de Haas, Ralph & Popov, A., 2018. "Financial Development and Industrial Pollution," Other publications TiSEM a0a4fb82-734a-442a-9ea1-a, Tilburg University, School of Economics and Management.
    20. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2022. "On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 733-758, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:93:y:2024:i:pb:p:777-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.