IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v73y2017icp423-434.html
   My bibliography  Save this article

Impact and significance of microbial contamination during fermentation for bioethanol production

Author

Listed:
  • Brexó, Ramon Peres
  • Sant’Ana, Anderson S.

Abstract

The bioethanol visibility in the global matrix of fuels, linked to ecological appeal and the possibility of using new raw materials justifies the increasing investments for the development of new processes. This fuel results from fermentation of sugars by yeasts, however the growth of exogenous microorganisms is sometimes unavoidable. The lactic acid bacteria and wild yeasts are the main contaminants, affecting yeasts’ performance and leading to negative impacts such as the formation of organic acids, polysaccharides and gummy biofilms. Further undesirable effects of the microbial contamination during bioethanol processing comprise flocculation, reduction of yeast cells viability and decrease in process yield. In extreme cases, the reduction in process yield can reach 20–30%, making the process impracticable. In this article, the impact and significance of microbial contaminants (lactic acid bacteria and wild yeasts) during fermentation of must for bioethanol production are reviewed.

Suggested Citation

  • Brexó, Ramon Peres & Sant’Ana, Anderson S., 2017. "Impact and significance of microbial contamination during fermentation for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 423-434.
  • Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:423-434
    DOI: 10.1016/j.rser.2017.01.151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117301624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puri, Munish & Abraham, Reinu E. & Barrow, Colin J., 2012. "Biofuel production: Prospects, challenges and feedstock in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6022-6031.
    2. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Ethanol demand under the flex-fuel technology regime in Brazil," Energy Economics, Elsevier, vol. 33(6), pages 1146-1154.
    3. Osei, Gabriel & Arthur, Richard & Afrane, George & Agyemang, Emmanuel Okoh, 2013. "Potential feedstocks for bioethanol production as a substitute for gasoline in Ghana," Renewable Energy, Elsevier, vol. 55(C), pages 12-17.
    4. de Barros, Marisa Maia & Szklo, Alexandre, 2015. "Petroleum refining flexibility and cost to address the risk of ethanol supply disruptions: The case of Brazil," Renewable Energy, Elsevier, vol. 77(C), pages 20-31.
    5. Wang, Lei & Quiceno, Raul & Price, Catherine & Malpas, Rick & Woods, Jeremy, 2014. "Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 571-582.
    6. Dias, Marina O.S. & Junqueira, Tassia L. & Jesus, Charles D.F. & Rossell, Carlos E.V. & Maciel Filho, Rubens & Bonomi, Antonio, 2012. "Improving second generation ethanol production through optimization of first generation production process from sugarcane," Energy, Elsevier, vol. 43(1), pages 246-252.
    7. García, A.E. & Carmona, R.J. & Lienqueo, M.E. & Salazar, O., 2011. "The current status of liquid biofuels in Chile," Energy, Elsevier, vol. 36(4), pages 2077-2084.
    8. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    9. Qiu, Huanguang & Sun, Laixiang & Huang, Jikun & Rozelle, Scott, 2012. "Liquid biofuels in China: Current status, government policies, and future opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3095-3104.
    10. Ghobadian, Barat, 2012. "Liquid biofuels potential and outlook in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4379-4384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Barros, Marisa Maia & Szklo, Alexandre, 2015. "Petroleum refining flexibility and cost to address the risk of ethanol supply disruptions: The case of Brazil," Renewable Energy, Elsevier, vol. 77(C), pages 20-31.
    2. Avelino Gonçalves, Fabiano & dos Santos, Everaldo Silvino & de Macedo, Gorete Ribeiro, 2015. "Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1287-1303.
    3. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    4. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    5. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    6. El Montasser, Ghassen & Gupta, Rangan & Martins, Andre Luis & Wanke, Peter, 2015. "Are there multiple bubbles in the ethanol–gasoline price ratio of Brazil?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 19-23.
    7. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    9. Moraes, Bruna S. & Zaiat, Marcelo & Bonomi, Antonio, 2015. "Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 888-903.
    10. Li, Wen-Chao & Li, Xia & Zhu, Jia-Qing & Qin, Lei & Li, Bing-Zhi & Yuan, Ying-Jin, 2018. "Improving xylose utilization and ethanol production from dry dilute acid pretreated corn stover by two-step and fed-batch fermentation," Energy, Elsevier, vol. 157(C), pages 877-885.
    11. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    12. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    13. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    14. Nunez, Hector & Onal, Hayri, 2013. "An Economic Analysis of Transportation Fuel Policies in Brazil," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149973, Agricultural and Applied Economics Association.
    15. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    16. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    17. Zeynep Clulow & Michele Ferguson & Peta Ashworth & David Reiner, 2021. "Political ideology and public views of the energy transition in Australia and the UK," Working Papers EPRG2106, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    18. Fernand, Francois & Israel, Alvaro & Skjermo, Jorunn & Wichard, Thomas & Timmermans, Klaas R. & Golberg, Alexander, 2017. "Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 35-45.
    19. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    20. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:423-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.