IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp13-23.html
   My bibliography  Save this article

Scenarios analysis of energy mix for road transportation sector in Indonesia

Author

Listed:
  • Deendarlianto,
  • Widyaparaga, Adhika
  • Sopha, Bertha Maya
  • Budiman, Arief
  • Muthohar, Imam
  • Setiawan, Indra Chandra
  • Lindasista, Alia
  • Soemardjito, Joewono
  • Oka, Kazutaka

Abstract

The design of future transportation energy mix has become an important issue in Indonesia. Oil-based fuels such as gasoline and diesel seems to be infeasible options in the future due to limited availability, high subsidy, and environmental issues. This paper presents energy mix model for transportation sector in Indonesia. The model considers a variety of feasible technology options and includes three competing objectives, i.e., energy consumption, fuel subsidy, and CO2 emission. Scenarios were developed to include business as usual (BAU), the introduction of compress natural gas (CNG) technology, vehicle retirement program, the implementation of hybrid vehicles energy mix which considers future behavioral factors. The result indicates that the most effective strategy to reduce energy consumption and eventually fuel subsidy is through retirement program of old vehicles. The introduction of the CNG vehicle on public transportation appears to give little significance in reducing the annual subsidy costs, fuel consumption and CO2 emissions.

Suggested Citation

  • Deendarlianto, & Widyaparaga, Adhika & Sopha, Bertha Maya & Budiman, Arief & Muthohar, Imam & Setiawan, Indra Chandra & Lindasista, Alia & Soemardjito, Joewono & Oka, Kazutaka, 2017. "Scenarios analysis of energy mix for road transportation sector in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 13-23.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:13-23
    DOI: 10.1016/j.rser.2016.11.206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116309613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ediger, Volkan S. & Camdali, Unal, 2007. "Energy and exergy efficiencies in Turkish transportation sector, 1988-2004," Energy Policy, Elsevier, vol. 35(2), pages 1238-1244, February.
    2. Yoo, Seung-Hoon & Kim, Yeonbae, 2006. "Electricity generation and economic growth in Indonesia," Energy, Elsevier, vol. 31(14), pages 2890-2899.
    3. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    4. Kumar, Subhash, 2016. "Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand," Applied Energy, Elsevier, vol. 163(C), pages 63-70.
    5. Dargay, Joyce & Gately, Dermot, 1999. "Income's effect on car and vehicle ownership, worldwide: 1960-2015," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 101-138, February.
    6. Hasan, M.H. & Mahlia, T.M.I. & Nur, Hadi, 2012. "A review on energy scenario and sustainable energy in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2316-2328.
    7. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    8. Hasan, M.H. & Muzammil, W.K. & Mahlia, T.M.I. & Jannifar, A. & Hasanuddin, I., 2012. "A review on the pattern of electricity generation and emission in Indonesia from 1987 to 2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3206-3219.
    9. Michael Ben-Chaim & Efraim Shmerling & Alon Kuperman, 2013. "Analytic Modeling of Vehicle Fuel Consumption," Energies, MDPI, vol. 6(1), pages 1-11, January.
    10. Ruamsuke, Kawin & Dhakal, Shobhakar & Marpaung, Charles O.P., 2015. "Energy and economic impacts of the global climate change policy on Southeast Asian countries: A general equilibrium analysis," Energy, Elsevier, vol. 81(C), pages 446-461.
    11. Rachmatullah, C. & Aye, Lu & Fuller, R.J., 2007. "Scenario planning for the electricity generation in Indonesia," Energy Policy, Elsevier, vol. 35(4), pages 2352-2359, April.
    12. Suntana, Asep S. & Vogt, Kristiina A. & Turnblom, Eric C. & Upadhye, Ravi, 2009. "Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions," Applied Energy, Elsevier, vol. 86(Supplemen), pages 215-221, November.
    13. Solaymani, Saeed & Kari, Fatimah, 2014. "Impacts of energy subsidy reform on the Malaysian economy and transportation sector," Energy Policy, Elsevier, vol. 70(C), pages 115-125.
    14. Erahman, Qodri Febrilian & Purwanto, Widodo Wahyu & Sudibandriyo, Mahmud & Hidayatno, Akhmad, 2016. "An assessment of Indonesia's energy security index and comparison with seventy countries," Energy, Elsevier, vol. 111(C), pages 364-376.
    15. Purwanto, Widodo Wahyu & Pratama, Yoga Wienda & Nugroho, Yulianto Sulistyo & Warjito, & Hertono, Gatot Fatwanto & Hartono, Djoni & Deendarlianto, & Tezuka, Tetsuo, 2015. "Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources," Renewable Energy, Elsevier, vol. 81(C), pages 308-318.
    16. Jupesta, Joni, 2012. "Modeling technological changes in the biofuel production system in Indonesia," Applied Energy, Elsevier, vol. 90(1), pages 211-217.
    17. World Bank, 2013. "World Development Indicators 2013," World Bank Publications - Books, The World Bank Group, number 13191.
    18. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra Setiawan, Indra & Indarto, & Deendarlianto,, 2021. "Quantitative analysis of automobile sector in Indonesian automotive roadmap for achieving national oil and CO2 emission reduction targets by 2030," Energy Policy, Elsevier, vol. 150(C).
    2. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    3. Fan, Yee Van & Klemeš, Jiří Jaromír & Walmsley, Timothy Gordon & Perry, Simon, 2019. "Minimising energy consumption and environmental burden of freight transport using a novel graphical decision-making tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Hoang Thanh Hanh & Dinh Tran Ngoc Huy & Pham Minh Dat, 2020. "Utilization of Energy Sources, Financial Stability and Prosperity in the Economy of Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 631-637.
    5. Anuar Sanusi & Faurani Santi Singagerda & Ahmad Zaharuddin Sani, 2021. "World Oil Price Shocks in Macroeconomic ASEAN +3 Countries: Measurement of Risk Management and Decision-making a Linear Dynamic Panel Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 75-83.
    6. Deendarlianto, & Widyaparaga, Adhika & Widodo, Tri & Handika, Irine & Chandra Setiawan, Indra & Lindasista, Alia, 2020. "Modelling of Indonesian road transport energy sector in order to fulfill the national energy and oil reduction targets," Renewable Energy, Elsevier, vol. 146(C), pages 504-518.
    7. Rahman, Arief & Dargusch, Paul & Wadley, David, 2021. "The political economy of oil supply in Indonesia and the implications for renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Rahman, Arief & Richards, Russell & Dargusch, Paul & Wadley, David, 2023. "Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization," Renewable Energy, Elsevier, vol. 202(C), pages 1305-1323.
    9. Sahraei, Mohammad Ali & Çodur, Merve Kayaci, 2022. "Prediction of transportation energy demand by novel hybrid meta-heuristic ANN," Energy, Elsevier, vol. 249(C).
    10. Rashid Khan, Haroon Ur & Siddique, Muhammad & Zaman, Khalid & Yousaf, Sheikh Usman & Shoukry, Alaa Mohamd & Gani, Showkat & Sasmoko, & Khan, Aqeel & Hishan, Sanil S. & Saleem, Hummera, 2018. "The impact of air transportation, railways transportation, and port container traffic on energy demand, customs duty, and economic growth: Evidence from a panel of low-, middle-, and high -income coun," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 18-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jannis Langer & Jaco Quist & Kornelis Blok, 2021. "Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Rahman, Arief & Dargusch, Paul & Wadley, David, 2021. "The political economy of oil supply in Indonesia and the implications for renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Hasan, M.H. & Muzammil, W.K. & Mahlia, T.M.I. & Jannifar, A. & Hasanuddin, I., 2012. "A review on the pattern of electricity generation and emission in Indonesia from 1987 to 2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3206-3219.
    4. Tang, Shengwen & Chen, Jingtao & Sun, Peigui & Li, Yang & Yu, Peng & Chen, E., 2019. "Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand and Myanmar)," Energy Policy, Elsevier, vol. 129(C), pages 239-249.
    5. Purwanto, Widodo Wahyu & Pratama, Yoga Wienda & Nugroho, Yulianto Sulistyo & Warjito, & Hertono, Gatot Fatwanto & Hartono, Djoni & Deendarlianto, & Tezuka, Tetsuo, 2015. "Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources," Renewable Energy, Elsevier, vol. 81(C), pages 308-318.
    6. Rahman, Arief & Richards, Russell & Dargusch, Paul & Wadley, David, 2023. "Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization," Renewable Energy, Elsevier, vol. 202(C), pages 1305-1323.
    7. Nasruddin, & Idrus Alhamid, M. & Daud, Yunus & Surachman, Arief & Sugiyono, Agus & Aditya, H.B. & Mahlia, T.M.I., 2016. "Potential of geothermal energy for electricity generation in Indonesia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 733-740.
    8. Singh, Rajbeer & Setiawan, Andri D., 2013. "Biomass energy policies and strategies: Harvesting potential in India and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 332-345.
    9. Handayani, Kamia & Krozer, Yoram & Filatova, Tatiana, 2017. "Trade-offs between electrification and climate change mitigation: An analysis of the Java-Bali power system in Indonesia," Applied Energy, Elsevier, vol. 208(C), pages 1020-1037.
    10. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    11. Veldhuis, A.J. & Reinders, A.H.M.E., 2013. "Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 315-324.
    12. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    13. Sholpan Smagulova & Amangeldi D. Omarov & Aybek B. Imashev, 2015. "The Value of Investment Resources Influx for the Development of the Electric Power Industry of Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 374-384.
    14. Kunaifi & Angèle Reinders, 2018. "Perceived and Reported Reliability of the Electricity Supply at Three Urban Locations in Indonesia," Energies, MDPI, vol. 11(1), pages 1-27, January.
    15. Ucok W.R. Siagian & Bintang B. Yuwono & Shinichiro Fujimori & Toshihiko Masui, 2017. "Low-Carbon Energy Development in Indonesia in Alignment with Intended Nationally Determined Contribution (INDC) by 2030," Energies, MDPI, vol. 10(1), pages 1-15, January.
    16. Alam, Mohammad Jahangir & Ahmed, Mumtaz & Begum, Ismat Ara, 2017. "Nexus between non-renewable energy demand and economic growth in Bangladesh: Application of Maximum Entropy Bootstrap approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 399-406.
    17. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    18. Wang, Y.F. & Li, K.P. & Xu, X.M. & Zhang, Y.R., 2014. "Transport energy consumption and saving in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 641-655.
    19. Pratama, Yoga Wienda & Purwanto, Widodo Wahyu & Tezuka, Tetsuo & McLellan, Benjamin Craig & Hartono, Djoni & Hidayatno, Akhmad & Daud, Yunus, 2017. "Multi-objective optimization of a multiregional electricity system in an archipelagic state: The role of renewable energy in energy system sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 423-439.
    20. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:13-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.