IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v66y2016icp360-379.html
   My bibliography  Save this article

Multi-input DC/DC converters in connection with distributed generation units – A review

Author

Listed:
  • Khosrogorji, S.
  • Ahmadian, M.
  • Torkaman, H.
  • Soori, S.

Abstract

In this paper, recent advances in multi-input converters are studied. In the past, some DC/DC converters used to be connected parallel to each other and thus multi-input converters were created. But today, some new structures have been proposed for this purpose. The main reason behind employing these converters is using less semiconductors, occupying less volume, thus reduction in manufacturing cost of the converters. In this article, multiple input converters are categorized into three groups: magnetic, electrical and electro-magnetic types. The first group includes topologies that have multi-winding transformer. The second group consists of topologies that have DC-link and sources connected to the DC-link and the latter includes topologies that have DC-link and two-winding transformer. In this paper, the topologies of various multi-input DC/DC converters will be reviewed and compared from different aspect such as, the battery life, the soft-switching, the source utilization, the isolation between the input and the output. The main reason for composing this paper is the collection of information about DC/DC multi-input converters. This review paper is the first of its kind with the aim of providing an information source and a selection guide on multi-input DC/DC converters for researchers, designers and application engineers.

Suggested Citation

  • Khosrogorji, S. & Ahmadian, M. & Torkaman, H. & Soori, S., 2016. "Multi-input DC/DC converters in connection with distributed generation units – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 360-379.
  • Handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:360-379
    DOI: 10.1016/j.rser.2016.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veena, P. & Indragandhi, V. & Jeyabharath, R. & Subramaniyaswamy, V., 2014. "Review of grid integration schemes for renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 628-641.
    2. Arul, P.G. & Ramachandaramurthy, Vigna K. & Rajkumar, R.K., 2015. "Control strategies for a hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 597-608.
    3. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    4. Ahmed, O.A. & Bleijs, J.A.M, 2015. "An overview of DC–DC converter topologies for fuel cell-ultracapacitor hybrid distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 609-626.
    5. Mohammed, Ammar & Pasupuleti, Jagadeesh & Khatib, Tamer & Elmenreich, Wilfried, 2015. "A review of process and operational system control of hybrid photovoltaic/diesel generator systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 436-446.
    6. Taghvaee, M.H. & Radzi, M.A.M. & Moosavain, S.M. & Hizam, Hashim & Hamiruce Marhaban, M., 2013. "A current and future study on non-isolated DC–DC converters for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 216-227.
    7. Suresh, Y. & Panda, Anup Kumar, 2013. "Investigation on hybrid cascaded multilevel inverter with reduced dc sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 49-59.
    8. Kuperman, Alon & Aharon, Ilan, 2011. "Battery-ultracapacitor hybrids for pulsed current loads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 981-992, February.
    9. Rehman, Zubair & Al-Bahadly, Ibrahim & Mukhopadhyay, Subhas, 2015. "Multiinput DC–DC converters in renewable energy applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 521-539.
    10. Ahmed, O.A. & Bleijs, J.A.M., 2013. "Power flow control Methods for an ultracapacitor bidirectional converter in DC microgrids—A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 727-738.
    11. Barghi Latran, Mohammad & Teke, Ahmet, 2015. "Investigation of multilevel multifunctional grid connected inverter topologies and control strategies used in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 361-376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Affam, Azuka & Buswig, Yonis M. & Othman, Al-Khalid Bin Hj & Julai, Norhuzaimin Bin & Qays, Ohirul, 2021. "A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Çelik, Özgür & Teke, Ahmet & Tan, Adnan, 2018. "Overview of micro-inverters as a challenging technology in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3191-3206.
    4. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    5. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    2. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    3. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2017. "Comprehensive overview of grid interfaced solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 316-332.
    4. Sri Revathi, B. & Prabhakar, M., 2016. "Non isolated high gain DC-DC converter topologies for PV applications – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 920-933.
    5. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    6. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    7. Sridhar, V. & Umashankar, S., 2017. "A comprehensive review on CHB MLI based PV inverter and feasibility study of CHB MLI based PV-STATCOM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 138-156.
    8. Cheng, Yu-Shan & Chuang, Man-Tsai & Liu, Yi-Hua & Wang, Shun-Chung & Yang, Zong-Zhen, 2016. "A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint," Renewable Energy, Elsevier, vol. 88(C), pages 58-72.
    9. Dedes, Eleftherios K. & Hudson, Dominic A. & Turnock, Stephen R., 2016. "Investigation of Diesel Hybrid systems for fuel oil reduction in slow speed ocean going ships," Energy, Elsevier, vol. 114(C), pages 444-456.
    10. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    11. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    12. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    13. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    14. Piotr Piórkowski & Adrian Chmielewski & Krzysztof Bogdziński & Jakub Możaryn & Tomasz Mydłowski, 2018. "Research on Ultracapacitors in Hybrid Systems: Case Study," Energies, MDPI, vol. 11(10), pages 1-13, September.
    15. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part II: Review and classification of control strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1123-1134.
    16. Balamurugan, M. & Sahoo, Sarat Kumar & Sukchai, Sukruedee, 2017. "Application of soft computing methods for grid connected PV system: A technological and status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1493-1508.
    17. Kala, Peeyush & Arora, Sudha, 2017. "A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 905-931.
    18. Prabaharan, Natarajan & Palanisamy, Kaliannan, 2017. "A comprehensive review on reduced switch multilevel inverter topologies, modulation techniques and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1248-1282.
    19. Min-Rong Chen & Huan Wang & Guo-Qiang Zeng & Yu-Xing Dai & Da-Qiang Bi, 2018. "Optimal P-Q Control of Grid-Connected Inverters in a Microgrid Based on Adaptive Population Extremal Optimization," Energies, MDPI, vol. 11(8), pages 1-19, August.
    20. Hossain, M.Z. & Rahim, N.A. & Selvaraj, Jeyraj a/l, 2018. "Recent progress and development on power DC-DC converter topology, control, design and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 205-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:360-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.