IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v65y2016icp841-852.html
   My bibliography  Save this article

Modified Nafion membranes for direct alcohol fuel cells: An overview

Author

Listed:
  • Zakil, F. Ahmad
  • Kamarudin, S.K.
  • Basri, S.

Abstract

Direct alcohol fuel cells (DAFCs) have attracted considerable attention recently as alternative energy resources due to their high efficiency compared with other types of fuel cells. Currently, the two most common types of DAFCs are direct methanol fuel cells (DMFCs) and direct ethanol fuel cells (DEFCs), which use methanol and ethanol solutions as fuel, respectively. The most widely used polymer membrane for DAFCs is Nafion because it exhibits superior proton conductivity and excellent mechanical properties and chemical stability. However, Nafion membranes for DAFCs are expensive, have limited device lifetimes due to chemical and mechanical degradation, and have higher fuel crossovers through the membrane. Typically, to improve Nafion membranes, many researchers have modified Nafion membranes by modifying the Nafion matrix with organic or inorganic materials with different structures, sizes and compositions, modification techniques, or multilayered systems in order to improve the physical properties of Nafion. The characterization, properties, and performance of DAFCs from various types of modified Nafion membranes are critically reviewed by giving detailed examples. The challenges and future prospects for the modification of Nafion membranes for DAFC applications are also discussed.

Suggested Citation

  • Zakil, F. Ahmad & Kamarudin, S.K. & Basri, S., 2016. "Modified Nafion membranes for direct alcohol fuel cells: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 841-852.
  • Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:841-852
    DOI: 10.1016/j.rser.2016.07.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.07.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Piyush & Dutta, Kingshuk & Das, Suparna & Kundu, Patit Paban, 2014. "Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: A preliminary evaluation for application in DMFC," Applied Energy, Elsevier, vol. 123(C), pages 66-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Abdelkareem, Mohammad Ali & Sayed, Enas Taha & Nakagawa, Nobuyoshi, 2020. "Significance of diffusion layers on the performance of liquid and vapor feed passive direct methanol fuel cells," Energy, Elsevier, vol. 209(C).
    4. Zhou, Jing & Cao, Jiamu & Zhang, Yufeng & Liu, Junfeng & Chen, Junyu & Li, Mingxue & Wang, Weiqi & Liu, Xiaowei, 2021. "Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zainoodin, A.M. & Kamarudin, S.K. & Masdar, M.S. & Daud, W.R.W. & Mohamad, A.B. & Sahari, J., 2014. "Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation," Applied Energy, Elsevier, vol. 135(C), pages 364-372.
    2. Uma Devi, A. & Muthumeenal, A. & Sabarathinam, R.M. & Nagendran, A., 2017. "Fabrication and electrochemical properties of SPVdF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells," Renewable Energy, Elsevier, vol. 102(PA), pages 258-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:841-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.