IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp317-329.html
   My bibliography  Save this article

Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review

Author

Listed:
  • Mahmood, Nubla
  • Yuan, Zhongshun
  • Schmidt, John
  • Xu, Chunbao (Charles)

Abstract

Lignin, nature’s dominant aromatic polymer, is found in most terrestrial plants in the range of 15–40% dry weight and provides structural integrity. Kraft lignin (KL) is a major by-product of pulp & paper industry where, hydrolysis lignin (HL) is the solid residue left from the enzymatic hydrolysis of wood after the pretreatment processes in cellulosic ethanol plants. Currently, most of the lignin is burned to generate heat and electricity and remaining is considered as a low value material. Only 1% of the annually produced lignin is being commercialized for its application in the preparation of bio-chemicals and to limited extent for bio-materials. Although with much lower reactivity, even crude lignin (a natural polyol) can be directly incorporated into polyurethane (PU) foam formulation due to the presence of aliphatic and aromatic hydroxyl groups in its structure as the reactive sites. However, bio-replacement ratios are usually low ~20–30% and further increasing replacement ratios results in fragile and low strength foams. Lignin depolymerization with selective bond cleavage is still a major challenge for converting it into value-added precursors especially for its utilization in the preparation of rigid PU foams. Depolymerization of these macromolecules can result in the valuable products with high hydroxyl number/functionality and low molecular weights, which in turn will increase the percentage replacement of bio-based polyols in the PU foam formulations. The technical routes/technologies for the depolymerization of lignins and their effective utilization as polyols in PU foams are summarized in this review article. These include direct utilization of lignin as well as the incorporation of depolymerized lignins, with and without modification, at high replacement ratios in PU foams. The major emphasis was given on the effective utilization of low value lignin for high value applications. Some of the associated challenges for the production of materials from lignin are also discussed.

Suggested Citation

  • Mahmood, Nubla & Yuan, Zhongshun & Schmidt, John & Xu, Chunbao (Charles), 2016. "Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 317-329.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:317-329
    DOI: 10.1016/j.rser.2016.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116000678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bennett, Simon J, 2012. "Using past transitions to inform scenarios for the future of renewable raw materials in the UK," Energy Policy, Elsevier, vol. 50(C), pages 95-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lian, Richeng & Ou, Mingyu & Guan, Haocun & Cui, Jiahui & Piao, Junxiu & Feng, Tingting & Ren, Jinyong & Wang, Yaxuan & Wang, Yaofei & Liu, Lei & Chen, Xilei & Jiao, Chuanmei, 2023. "Facile fabrication of multifunctional energy-saving building materials with excellent thermal insulation, robust mechanical property and ultrahigh flame retardancy," Energy, Elsevier, vol. 277(C).
    2. Dessbesell, Luana & Paleologou, Michael & Leitch, Mathew & Pulkki, Reino & Xu, Chunbao (Charles), 2020. "Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Chio, Chonlong & Sain, Mohini & Qin, Wensheng, 2019. "Lignin utilization: A review of lignin depolymerization from various aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 232-249.
    4. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    5. Menisha S. Karunarathna & Rhett C. Smith, 2020. "Valorization of Lignin as a Sustainable Component of Structural Materials and Composites: Advances from 2011 to 2019," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    6. Umut Şen & Bruno Esteves & Helena Pereira, 2023. "Pyrolysis and Extraction of Bark in a Biorefineries Context: A Critical Review," Energies, MDPI, vol. 16(13), pages 1-23, June.
    7. Francisco Vásquez-Garay & Isabel Carrillo-Varela & Claudia Vidal & Pablo Reyes-Contreras & Mirko Faccini & Regis Teixeira Mendonça, 2021. "A Review on the Lignin Biopolymer and Its Integration in the Elaboration of Sustainable Materials," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    8. Liu, Zhi-Hua & Le, Rosemary K. & Kosa, Matyas & Yang, Bin & Yuan, Joshua & Ragauskas, Arthur J., 2019. "Identifying and creating pathways to improve biological lignin valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 349-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubio-Varas, Mar & Muñoz-Delgado, Beatriz, 2017. "200 years diversifying the energy mix? Diversification paths of the energy baskets of European early comers vs. latecomers," Working Papers in Economic History 2017/01, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
    2. Rubio-Varas, Mar & Muñoz-Delgado, Beatriz, 2019. "Long-term diversification paths and energy transitions in Europe," Ecological Economics, Elsevier, vol. 163(C), pages 158-168.
    3. Santos, V.E.N. & Ely, R.N. & Szklo, A.S. & Magrini, A., 2016. "Chemicals, electricity and fuels from biorefineries processing Brazil׳s sugarcane bagasse: Production recipes and minimum selling prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1443-1458.
    4. Aslani, Alireza & Helo, Petri & Naaranoja, Marja, 2014. "Role of renewable energy policies in energy dependency in Finland: System dynamics approach," Applied Energy, Elsevier, vol. 113(C), pages 758-765.
    5. Rick Bosman & Jan Rotmans, 2016. "Transition Governance towards a Bioeconomy: A Comparison of Finland and The Netherlands," Sustainability, MDPI, vol. 8(10), pages 1-20, October.
    6. Mäkitie, Tuukka & Hanson, Jens & Steen, Markus & Hansen, Teis & Andersen, Allan Dahl, 2022. "Complementarity formation mechanisms in technology value chains," Research Policy, Elsevier, vol. 51(7).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:317-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.