IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v58y2016icp1143-1151.html
   My bibliography  Save this article

Research on desulfurization wastewater evaporation: Present and future perspectives

Author

Listed:
  • Shuangchen, Ma
  • Jin, Chai
  • Gongda, Chen
  • Weijing, Yu
  • Sijie, Zhu

Abstract

Nowadays wastewater zero emission in power plants has attracted great attention in the world. This paper describes the recent progress in the cooling of flue gas by the evaporation of desulfurization wastewater. The desulfurization wastewater slurry is mixed with pressurized compression air, and then sprayed into flue gas duct between the air pre-heater and electro-static precipitator or separated evaporation tower, to evaporate the wastewater instantaneously using the exhausted heat of flue gas. This process can reduce water consumption in flue gas desulfurization, cut down the traditional disposing expense consumed in desulfurization wastewater treatment, and reduce gypsum rain discharged from stack etc. This paper summarizes the negative impacts due to the omission of gas–gas heater (GGH) and the difficulties in desulfurization wastewater treatment in current power plants, and also points out that desulfurization wastewater evaporation technology is an important way to achieve zero emission of desulfurization wastewater or other high salt concentration wastewater and solve the problems related to omitting GGH. The instant regulation and control mechanism involved in desulfurization wastewater, migration and transformation rules of desulfurization wastewater and other key problems to be solved are also mentioned respectively. Hopefully, through multidisciplinary researches, evaporation treatment technology for desulfurization wastewater or other high salt concentration wastewater in coal-fired power plants will become mature and be applied widely in near future.

Suggested Citation

  • Shuangchen, Ma & Jin, Chai & Gongda, Chen & Weijing, Yu & Sijie, Zhu, 2016. "Research on desulfurization wastewater evaporation: Present and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1143-1151.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1143-1151
    DOI: 10.1016/j.rser.2015.12.252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115016354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barrow, H. & Pope, C.W., 2007. "Droplet evaporation with reference to the effectiveness of water-mist cooling," Applied Energy, Elsevier, vol. 84(4), pages 404-412, April.
    2. Feeley, Thomas J. & Skone, Timothy J. & Stiegel, Gary J. & McNemar, Andrea & Nemeth, Michael & Schimmoller, Brian & Murphy, James T. & Manfredo, Lynn, 2008. "Water: A critical resource in the thermoelectric power industry," Energy, Elsevier, vol. 33(1), pages 1-11.
    3. Gude, Veera Gnaneswar, 2015. "Energy and water autarky of wastewater treatment and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 52-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Wang, Chunyan & Li, Yaqing & Liu, Yi, 2018. "Investigation of water-energy-emission nexus of air pollution control of the coal-fired power industry: A case study of Beijing-Tianjin-Hebei region, China," Energy Policy, Elsevier, vol. 115(C), pages 291-301.
    3. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    4. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    5. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    6. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    7. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Bouckaert, Stéphanie & Assoumou, Edi & Selosse, Sandrine & Maïzi, Nadia, 2014. "A prospective analysis of waste heat management at power plants and water conservation issues using a global TIMES model," Energy, Elsevier, vol. 68(C), pages 80-91.
    9. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    10. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.
    12. Diego Sesma-Martín, 2020. "Cooling Water: A Source of Conflict in Spain, 1970–1980," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    13. Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
    14. Koch, Hagen & Vögele, Stefan, 2009. "Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change," Ecological Economics, Elsevier, vol. 68(7), pages 2031-2039, May.
    15. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    16. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    17. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    18. Mattioli, A. & Gatti, G.B. & Mattuzzi, G.P. & Cecchi, F. & Bolzonella, D., 2017. "Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study," Renewable Energy, Elsevier, vol. 113(C), pages 980-988.
    19. John Foster & William Paul Bell & Craig Froome & Phil Wild & Liam Wagner & Deepak Sharma & Suwin Sandu & Suchi Misra & Ravindra Bagia, 2012. "Institutional adaptability to redress electricity infrastructure vulnerability due to climate change," Energy Economics and Management Group Working Papers 7-2012, School of Economics, University of Queensland, Australia.
    20. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1143-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.