IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v58y2016icp1143-1151.html
   My bibliography  Save this article

Research on desulfurization wastewater evaporation: Present and future perspectives

Author

Listed:
  • Shuangchen, Ma
  • Jin, Chai
  • Gongda, Chen
  • Weijing, Yu
  • Sijie, Zhu

Abstract

Nowadays wastewater zero emission in power plants has attracted great attention in the world. This paper describes the recent progress in the cooling of flue gas by the evaporation of desulfurization wastewater. The desulfurization wastewater slurry is mixed with pressurized compression air, and then sprayed into flue gas duct between the air pre-heater and electro-static precipitator or separated evaporation tower, to evaporate the wastewater instantaneously using the exhausted heat of flue gas. This process can reduce water consumption in flue gas desulfurization, cut down the traditional disposing expense consumed in desulfurization wastewater treatment, and reduce gypsum rain discharged from stack etc. This paper summarizes the negative impacts due to the omission of gas–gas heater (GGH) and the difficulties in desulfurization wastewater treatment in current power plants, and also points out that desulfurization wastewater evaporation technology is an important way to achieve zero emission of desulfurization wastewater or other high salt concentration wastewater and solve the problems related to omitting GGH. The instant regulation and control mechanism involved in desulfurization wastewater, migration and transformation rules of desulfurization wastewater and other key problems to be solved are also mentioned respectively. Hopefully, through multidisciplinary researches, evaporation treatment technology for desulfurization wastewater or other high salt concentration wastewater in coal-fired power plants will become mature and be applied widely in near future.

Suggested Citation

  • Shuangchen, Ma & Jin, Chai & Gongda, Chen & Weijing, Yu & Sijie, Zhu, 2016. "Research on desulfurization wastewater evaporation: Present and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1143-1151.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1143-1151
    DOI: 10.1016/j.rser.2015.12.252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115016354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feeley, Thomas J. & Skone, Timothy J. & Stiegel, Gary J. & McNemar, Andrea & Nemeth, Michael & Schimmoller, Brian & Murphy, James T. & Manfredo, Lynn, 2008. "Water: A critical resource in the thermoelectric power industry," Energy, Elsevier, vol. 33(1), pages 1-11.
    2. Gude, Veera Gnaneswar, 2015. "Energy and water autarky of wastewater treatment and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 52-68.
    3. Barrow, H. & Pope, C.W., 2007. "Droplet evaporation with reference to the effectiveness of water-mist cooling," Applied Energy, Elsevier, vol. 84(4), pages 404-412, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Wang, Chunyan & Li, Yaqing & Liu, Yi, 2018. "Investigation of water-energy-emission nexus of air pollution control of the coal-fired power industry: A case study of Beijing-Tianjin-Hebei region, China," Energy Policy, Elsevier, vol. 115(C), pages 291-301.
    3. Foster, John & Bell, William Paul & Wild, Phillip & Sharma, Deepak & Sandu, Suwin & Froome, Craig & Wagner, Liam & Misra, Suchi & Bagia, Ravindra, 2013. "Analysis of institutional adaptability to redress electricity infrastructure vulnerability due to climate change," MPRA Paper 47787, University Library of Munich, Germany.
    4. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    5. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    6. Krieg, Thomas & Enzmann, Franziska & Sell, Dieter & Schrader, Jens & Holtmann, Dirk, 2017. "Simulation of the current generation of a microbial fuel cell in a laboratory wastewater treatment plant," Applied Energy, Elsevier, vol. 195(C), pages 942-949.
    7. Benjamin Court & Thomas Elliot & Joseph Dammel & Thomas Buscheck & Jeremy Rohmer & Michael Celia, 2012. "Promising synergies to address water, sequestration, legal, and public acceptance issues associated with large-scale implementation of CO 2 sequestration," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 569-599, August.
    8. Alami, Abdul Hai & Abdelkareem, Mohammad Ali & Faraj, Mohammed & Aokal, Kamilia & Al Safarini, Nada, 2020. "Titanium dioxide-coated nickel foam photoelectrodes for direct urea fuel cell applications," Energy, Elsevier, vol. 208(C).
    9. Märker, Carolin & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "Integrated governance for the food–energy–water nexus – The scope of action for institutional change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 290-300.
    10. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    11. Anirban Chakraborty & Sumit Kumar & L. S. Shashidhara & Anjali Taneja, 2021. "Building Sustainable Societies through Purpose-Driven Universities: A Case Study from Ashoka University (India)," Sustainability, MDPI, vol. 13(13), pages 1-20, July.
    12. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    13. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    14. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Harnpon Phungrassami & Phairat Usubharatana, 2021. "Environmental Problem Shifting Analysis of Pollution Control Units in a Coal-Fired Powerplant Based on Multiple Regression and LCA Methodology," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    16. Bouckaert, Stéphanie & Assoumou, Edi & Selosse, Sandrine & Maïzi, Nadia, 2014. "A prospective analysis of waste heat management at power plants and water conservation issues using a global TIMES model," Energy, Elsevier, vol. 68(C), pages 80-91.
    17. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    19. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    20. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1143-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.