IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp59-72.html
   My bibliography  Save this article

Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?

Author

Listed:
  • Thomas, Heiko
  • Marian, Adela
  • Chervyakov, Alexander
  • Stückrad, Stefan
  • Salmieri, Delia
  • Rubbia, Carlo

Abstract

Despite the extensive research and development investments into superconducting science and technology, both at the fundamental and at the applied levels, many benefits of superconducting transmission lines (SCTL) remain unknown to the public and decision makers at large. This paper aims at informing about the progress in this important research field. Superconducting transmission lines have a tremendous size advantage and lower total electrical losses for high capacity transmission plus a number of technological advantages compared to solutions based on standard conductors. This leads to a minimized environmental impact and enables an overall more sustainable transmission of electric energy. One of the direct benefits may be an increased public acceptance due to the low visual impact with a subsequent reduction of approval time. The access of remote renewable energy (RE) sources with high-capacity transmission is rendered possible with superior efficiency. That not only translates into further reducing CO2 emissions in a global energy mix that is still primarily based on fossils, but can also facilitate the development of RE sources given for instance the strong local opposition against the construction of new transmission lines. The socio-economic aspects of superconducting transmission lines based on the novel magnesium diboride (MgB2) superconductor and on high-temperature superconductors (HTS) are compared to state-of-the-art HVDC overhead lines and underground cables based on resistive conductors.

Suggested Citation

  • Thomas, Heiko & Marian, Adela & Chervyakov, Alexander & Stückrad, Stefan & Salmieri, Delia & Rubbia, Carlo, 2016. "Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 59-72.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:59-72
    DOI: 10.1016/j.rser.2015.10.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211501120X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, Harry, 2008. "Superconductors in the transmission of electricity and networks," Energy Policy, Elsevier, vol. 36(12), pages 4342-4345, December.
    2. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    3. Wolsink, Maarten, 2007. "Wind power implementation: The nature of public attitudes: Equity and fairness instead of 'backyard motives'," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1188-1207, August.
    4. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    5. Ciupuliga, A.R. & Cuppen, E., 2013. "The role of dialogue in fostering acceptance of transmission lines: the case of a France–Spain interconnection project," Energy Policy, Elsevier, vol. 60(C), pages 224-233.
    6. Pickard, William F., 2013. "The limits of HVDC transmission," Energy Policy, Elsevier, vol. 61(C), pages 292-300.
    7. Buijs, Patrik & Bekaert, David & Cole, Stijn & Van Hertem, Dirk & Belmans, Ronnie, 2011. "Transmission investment problems in Europe: Going beyond standard solutions," Energy Policy, Elsevier, vol. 39(3), pages 1794-1801, March.
    8. Cohen, Jed J. & Reichl, Johannes & Schmidthaler, Michael, 2014. "Re-focussing research efforts on the public acceptance of energy infrastructure: A critical review," Energy, Elsevier, vol. 76(C), pages 4-9.
    9. Jun Nagamatsu & Norimasa Nakagawa & Takahiro Muranaka & Yuji Zenitani & Jun Akimitsu, 2001. "Superconductivity at 39 K in magnesium diboride," Nature, Nature, vol. 410(6824), pages 63-64, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cullinane, M. & Judge, F. & O'Shea, M. & Thandayutham, K. & Murphy, J., 2022. "Subsea superconductors: The future of offshore renewable energy transmission?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    3. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    4. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Zou, Zhice & Shen, Boyang & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu, 2022. "Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center," Applied Energy, Elsevier, vol. 310(C).
    5. Brinkerink, Maarten & Gallachóir, Brian Ó & Deane, Paul, 2019. "A comprehensive review on the benefits and challenges of global power grids and intercontinental interconnectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 274-287.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharpton, Tara & Lawrence, Thomas & Hall, Margeret, 2020. "Drivers and barriers to public acceptance of future energy sources and grid expansion in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    2. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    3. Hogan, Jessica L. & Warren, Charles R. & Simpson, Michael & McCauley, Darren, 2022. "What makes local energy projects acceptable? Probing the connection between ownership structures and community acceptance," Energy Policy, Elsevier, vol. 171(C).
    4. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    5. Bertsch, Valentin & Hyland, Marie & Mahony, Michael, 2017. "What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland," Energy Policy, Elsevier, vol. 106(C), pages 472-497.
    6. John Colton & Kenneth Corscadden & Stewart Fast & Monica Gattinger & Joel Gehman & Martha Hall Findlay & Dylan Morgan & Judith Sayers & Jennifer Winter & Adonis Yatchew, 2016. "Energy Projects, Social Licence, Public Acceptance and Regulatory Systems in Canada: A White Paper," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 9(20), May.
    7. Agnieszka Rochmińska, 2023. "Wind Energy Infrastructure and Socio-Spatial Conflicts," Energies, MDPI, vol. 16(3), pages 1-19, January.
    8. Hyland, Marie & Bertsch, Valentin, 2018. "The Role of Community Involvement Mechanisms in Reducing Resistance to Energy Infrastructure Development," Ecological Economics, Elsevier, vol. 146(C), pages 447-474.
    9. Eduardo Martínez-Mendoza & Luis Arturo Rivas-Tovar & Luis Enrique García-Santamaría, 2021. "Wind energy in the Isthmus of Tehuantepec: conflicts and social implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11706-11731, August.
    10. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Sonnberger, Marco & Ruddat, Michael, 2017. "Local and socio-political acceptance of wind farms in Germany," Technology in Society, Elsevier, vol. 51(C), pages 56-65.
    12. Jed Cohen & Klaus Moeltner & Johannes Reichl & Michael Schmidthaler, 2016. "An Empirical Analysis of Local Opposition to New Transmission Lines Across the EU-27," The Energy Journal, , vol. 37(3), pages 59-82, July.
    13. Friedl, Christina & Reichl, Johannes, 2016. "Realizing energy infrastructure projects – A qualitative empirical analysis of local practices to address social acceptance," Energy Policy, Elsevier, vol. 89(C), pages 184-193.
    14. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    15. Plum, Christiane & Olschewski, Roland & Jobin, Marilou & van Vliet, Oscar, 2019. "Public preferences for the Swiss electricity system after the nuclear phase-out: A choice experiment," Energy Policy, Elsevier, vol. 130(C), pages 181-196.
    16. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    17. Dugstad, Anders & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2020. "Acceptance of wind power development and exposure – Not-in-anybody's-backyard," Energy Policy, Elsevier, vol. 147(C).
    18. Russell, Aaron & Bingaman, Samantha & Garcia, Hannah-Marie, 2021. "Threading a moving needle: The spatial dimensions characterizing US offshore wind policy drivers," Energy Policy, Elsevier, vol. 157(C).
    19. Haggett, Claire, 2011. "Understanding public responses to offshore wind power," Energy Policy, Elsevier, vol. 39(2), pages 503-510, February.
    20. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:59-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.