IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp249-272.html
   My bibliography  Save this article

Revisiting cellulase production and redefining current strategies based on major challenges

Author

Listed:
  • Kuhad, Ramesh Chander
  • Deswal, Deepa
  • Sharma, Sonia
  • Bhattacharya, Abhishek
  • Jain, Kavish Kumar
  • Kaur, Amandeep
  • Pletschke, Brett I.
  • Singh, Ajay
  • Karp, Matti

Abstract

Lignocellulosic biomass has been considered as an important and sustainable source of renewable energy. Cellulose constitutes the major component of the lignocellulosic biomass and also offers maximum recalcitrance towards its fullest utilization. The enzymatic breakdown of cellulose is achieved through cellulases. Diverse forms of microbes including fungi, bacteria, actinomycetes and yeast are known to produce cellulases that have found extensive application in various industries. Due to the current global political unrest over oil prices and the threat of global warming following combustion of fossil fuels, the paradigm of research is now focused on biofuel production from plant biomass. Conventional approaches have not been economically feasible for meeting the demands of the industry. This review provides an update regarding the status of present microbial cellulase production technologies and research with special reference to solid state fermentation and different molecular techniques such as mutagenesis, metabolic engineering and heterologous gene expression of cellulases from different microbial domains with improved catalytic and stability properties. Metagenomic and genomic studies for mining of novel cellulase genes in addition to screening of culturable strains using conventional methods have been advanced. In addition the bottlenecks associated with cellulase production and how the future research needs to be directed to provide a comprehensive technology for the production of cellulases with novel traits for application at an industrial level without economic constraints are discussed.

Suggested Citation

  • Kuhad, Ramesh Chander & Deswal, Deepa & Sharma, Sonia & Bhattacharya, Abhishek & Jain, Kavish Kumar & Kaur, Amandeep & Pletschke, Brett I. & Singh, Ajay & Karp, Matti, 2016. "Revisiting cellulase production and redefining current strategies based on major challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 249-272.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:249-272
    DOI: 10.1016/j.rser.2015.10.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115012113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farinas, Cristiane S., 2015. "Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 179-188.
    2. Lamers, Patrick & McCormick, Kes & Hilbert, Jorge Antonio, 2008. "The emerging liquid biofuel market in Argentina: Implications for domestic demand and international trade," Energy Policy, Elsevier, vol. 36(4), pages 1479-1490, April.
    3. Jung, You Ree & Park, Jang Min & Heo, Sun-Yeon & Hong, Won-Kyung & Lee, Sung-Mok & Oh, Baek-Rock & Park, Seung-Moon & Seo, Jeong-Woo & Kim, Chul Ho, 2015. "Cellulolytic enzymes produced by a newly isolated soil fungus Penicillium sp. TG2 with potential for use in cellulosic ethanol production," Renewable Energy, Elsevier, vol. 76(C), pages 66-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xing & Tian, Yi & He, Bin, 2023. "Modification of cellulase with smart-green polymers to promote low-cost and cleaner production of cellulosic ethanol," Renewable Energy, Elsevier, vol. 205(C), pages 525-533.
    2. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    3. Akram, Fatima & Haq, Ikram ul & Aqeel, Amna & Ahmed, Zeeshan & Shah, Fatima Iftikhar, 2021. "Thermostable cellulases: Structure, catalytic mechanisms, directed evolution and industrial implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Jakub Dobrzyński & Barbara Wróbel & Ewa Beata Górska, 2023. "Taxonomy, Ecology, and Cellulolytic Properties of the Genus Bacillus and Related Genera," Agriculture, MDPI, vol. 13(10), pages 1-20, October.
    5. Ben Bridgens & Kersty Hobson & Debra Lilley & Jacquetta Lee & Janet L. Scott & Garrath T. Wilson, 2019. "Closing the Loop on E‐waste: A Multidisciplinary Perspective," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 169-181, February.
    6. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
    7. Akram, Fatima & Haq, Ikram ul & Imran, Wafa & Mukhtar, Hamid, 2018. "Insight perspectives of thermostable endoglucanases for bioethanol production: A review," Renewable Energy, Elsevier, vol. 122(C), pages 225-238.
    8. Monica, P. & Ranjan, Ritesh & Kapoor, Mukesh, 2024. "Lignocellulose-degrading chimeras: Emerging perspectives for catalytic aspects, stability, and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Ogechukwu Bose Chukwuma & Mohd Rafatullah & Husnul Azan Tajarudin & Norli Ismail, 2020. "Lignocellulolytic Enzymes in Biotechnological and Industrial Processes: A Review," Sustainability, MDPI, vol. 12(18), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radhakumari, Muktham & Taha, Mohamed & Shahsavari, Esmaeil & Bhargava, Suresh K. & Satyavathi, Bankupalli & Ball, Andrew S., 2017. "Pongamia pinnata seed residue – A low cost inedible resource for on-site/in-house lignocellulases and sustainable ethanol production," Renewable Energy, Elsevier, vol. 103(C), pages 682-687.
    2. Silva Junior, Daniel, 2013. "Impacts of biodiesel on the Brazilian fuel market," Energy Economics, Elsevier, vol. 36(C), pages 666-675.
    3. Julia Tomei & Stella Semino & Helena Paul & Lilian Joensen & Mario Monti & Erling Jelsøe, 2010. "Soy production and certification: the case of Argentinean soy-based biodiesel," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 371-394, April.
    4. Tomei, Julia & Upham, Paul, 2009. "Argentinean soy-based biodiesel: An introduction to production and impacts," Energy Policy, Elsevier, vol. 37(10), pages 3890-3898, October.
    5. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    6. Naylor, Rosamond L. & Higgins, Matthew M., 2017. "The political economy of biodiesel in an era of low oil prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 695-705.
    7. Bhattacharya, Raikamal & Arora, Sidharth & Ghosh, Sanjoy, 2022. "Utilization of waste pine needles for the production of cellulolytic enzymes in a solid state fermentation bioreactor and high calorific value fuel pellets from fermented residue: Towards a biorefiner," Renewable Energy, Elsevier, vol. 195(C), pages 1064-1076.
    8. Habib-Mintz, Nazia, 2010. "Biofuel investment in Tanzania: Omissions in implementation," Energy Policy, Elsevier, vol. 38(8), pages 3985-3997, August.
    9. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Akram, Fatima & Haq, Ikram ul & Aqeel, Amna & Ahmed, Zeeshan & Shah, Fatima Iftikhar, 2021. "Thermostable cellulases: Structure, catalytic mechanisms, directed evolution and industrial implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Akram, Fatima & Haq, Ikram ul & Imran, Wafa & Mukhtar, Hamid, 2018. "Insight perspectives of thermostable endoglucanases for bioethanol production: A review," Renewable Energy, Elsevier, vol. 122(C), pages 225-238.
    12. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    13. Iskandar Ali Alam & Hairani Hairani & Faurani Santi Singagerda, 2019. "Price Determination Model of World Vegetable and Petroleum," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 157-177.
    14. Franco, Carlos J. & Zapata, Sebastian & Dyner, Isaac, 2015. "Simulation for assessing the liberalization of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 298-307.
    15. Taherzadeh-Ghahfarokhi, Maryam & Panahi, Reza & Mokhtarani, Babak, 2019. "Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residue," Renewable Energy, Elsevier, vol. 131(C), pages 946-955.
    16. Diana Córdoba & Marta Chiappe & Jesse Abrams & Theresa Selfa, 2018. "Fuelling Social Inclusion? Neo†extractivism, State–Society Relations and Biofuel Policies in Latin America's Southern Cone," Development and Change, International Institute of Social Studies, vol. 49(1), pages 63-88, January.
    17. Lamers, Patrick & Hamelinck, Carlo & Junginger, Martin & Faaij, André, 2011. "International bioenergy trade--A review of past developments in the liquid biofuel market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2655-2676, August.
    18. Cremonez, Paulo André & Feroldi, Michael & Feiden, Armin & Gustavo Teleken, Joel & José Gris, Diego & Dieter, Jonathan & de Rossi, Eduardo & Antonelli, Jhonatas, 2015. "Current scenario and prospects of use of liquid biofuels in South America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 352-362.
    19. Perdiguero, Jordi & Jiménez, Juan Luis, 2011. "Sell or not sell biodiesel: Local competition and government measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1525-1532, April.
    20. Rosen, Yan & Mamane, Hadas & Gerchman, Yoram, 2021. "Immersed ozonation of agro-wastes as an effective pretreatment method in bioethanol production," Renewable Energy, Elsevier, vol. 174(C), pages 382-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:249-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.