IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp1519-1526.html
   My bibliography  Save this article

The use of socioeconomic indicators to assess the impacts of sugarcane production in Brazil

Author

Listed:
  • Machado, Pedro Gerber
  • Picoli, Michelle Cristina Araujo
  • Torres, Laura Jimena
  • Oliveira, Janaína Garcia
  • Walter, Arnaldo

Abstract

Global biofuel consumption increased in 2013, following a slight decline in 2012. The bulk of ethanol comes from two countries: United States (based on corn), and Brazil (sugarcane). The International Energy Agency predicted a world market of approximately 200 BL of fuel ethanol in 2020, and both US and Brazil might keep their importance. It is still a matter of discussion the impacts of such economic activity at the level it takes place. In this sense, a research activity has been conducted aiming at evaluating the socioeconomic impacts of sugarcane activities at a municipal level. Three important states in Brazil for sugarcane production were chosen, São Paulo, Alagoas and Goiás. Eight indicators were used to assess quality of life: Illiteracy Rate, Human Development Index, Theil Index, Percentage of Poor People, Connection to the Grid, Connection to the Sewer System, Child Mortality and Life Expectancy. The analysis of the socioeconomic indicators of the municipalities showed with statistical rigor, that in all three states studied the municipalities in which sugarcane activity is relevant with sugarcane presented, over all, better socioeconomic conditions represented by the indicators selected. However, the state of São Paulo was the only to present advantage for the municipalities with sugarcane, for all indicators selected. On the other hand, the differences between municipalities are not so strong in Goiás state, but it is important to highlight that sugarcane production started more recently than other states. The analysis related to the evolution of the selected socioeconomic indicators of both groups did not allow the acceptance of the hypothesis that the indicators evolved differently when comparing the groups with sugarcane and without. When statistically significant, municipalities without sugarcane show better evolution. Nevertheless, considering the indicators used, the advantages of the municipalities with sugarcane are reduced in the course of time.

Suggested Citation

  • Machado, Pedro Gerber & Picoli, Michelle Cristina Araujo & Torres, Laura Jimena & Oliveira, Janaína Garcia & Walter, Arnaldo, 2015. "The use of socioeconomic indicators to assess the impacts of sugarcane production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1519-1526.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1519-1526
    DOI: 10.1016/j.rser.2015.07.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115007741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    2. Arnaldo Walter & Marcelo Valadares Galdos & Fabio Vale Scarpare & Manoel Regis Lima Verde Leal & Joaquim Eugênio Abel Seabra & Marcelo Pereira da Cunha & Michelle Cristina Araujo Picoli & Camila Ortol, 2014. "Brazilian sugarcane ethanol: developments so far and challenges for the future," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 70-92, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Gerber Machado & Arnaldo Walter & Michelle Cristina Picoli & Cristina Gerber João, 2017. "Potential impacts on local quality of life due to sugarcane expansion: a case study based on panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 2069-2092, October.
    2. Machado, Pedro Gerber & Rampazo, Núria A. Miatto & Picoli, Michelle Cristina Araujo & Miranda, Cauã Guilherme & Duft, Daniel Garbellini & de Jesus, Katia Regina Evaristo, 2017. "Analysis of socioeconomic and environmental sensitivity of sugarcane cultivation using a Geographic Information System," Land Use Policy, Elsevier, vol. 69(C), pages 64-74.
    3. Aguilar-Rivera, Noé, 2019. "A framework for the analysis of socioeconomic and geographic sugarcane agro industry sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 149-160.
    4. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Brinkman, Marnix L.J. & da Cunha, Marcelo P. & Heijnen, Sanne & Wicke, Birka & Guilhoto, Joaquim J.M. & Walter, Arnaldo & Faaij, André P.C. & van der Hilst, Floor, 2018. "Interregional assessment of socio-economic effects of sugarcane ethanol production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 347-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauri Ahopelto & Noora Veijalainen & Joseph H. A. Guillaume & Marko Keskinen & Mika Marttunen & Olli Varis, 2019. "Can There be Water Scarcity with Abundance of Water? Analyzing Water Stress during a Severe Drought in Finland," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    2. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    3. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    4. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    5. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    6. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    7. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    8. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    9. González Perea, R. & Camacho Poyato, E. & Rodríguez Díaz, J.A., 2021. "Forecasting of applied irrigation depths at farm level for energy tariff periods using Coactive neuro-genetic fuzzy system," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Machado, R.L. & Abreu, M.R., 2024. "Multi-objective optimization of the first and second-generation ethanol supply chain in Brazil using the water-energy-food-land nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    11. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    12. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    13. Lijuan Du & Li Xu & Yanping Li & Changshun Liu & Zhenhua Li & Jefferson S. Wong & Bo Lei, 2019. "China’s Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    14. Chen, Zi-yue & Huang, Zhen-hai & Nie, Pu-yan, 2018. "Industrial characteristics and consumption efficiency from a nexus perspective – Based on Anhui’s Empirical Statistics," Energy Policy, Elsevier, vol. 115(C), pages 281-290.
    15. Pauline Macharia & Maria Wirth & Paul Yillia & Norbert Kreuzinger, 2021. "Examining the Relative Impact of Drivers on Energy Input for Municipal Water Supply in Africa," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    16. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    17. Simpson, Gareth & Jewitt, Graham & Becker, William & Badenhorst, Jessica & Neves, Ana & Rovira, Pere & Pascual, Victor, 2020. "The Water-Energy-Food Nexus Index: A Tool for Integrated Resource Management and Sustainable Development," OSF Preprints tdhw5, Center for Open Science.
    18. Umanath Malaiarasan & R. Paramasivam & K. Thomas Felix & S. J. Balaji, 2020. "Simultaneous equation model for Indian sugar sector," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 22(1), pages 113-141, June.
    19. Pitak Ngammuangtueng & Napat Jakrawatana & Pariyapat Nilsalab & Shabbir H. Gheewala, 2019. "Water, Energy and Food Nexus in Rice Production in Thailand," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    20. Shin-Cheng Yeh & Haw-Jeng Chiou & Ai-Wei Wu & Ho-Ching Lee & Homer C. Wu, 2019. "Diverged Preferences towards Sustainable Development Goals? A Comparison between Academia and the Communication Industry," IJERPH, MDPI, vol. 16(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1519-1526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.