IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v43y2015icp1301-1319.html
   My bibliography  Save this article

A study, analysis and power management schemes for fuel cells

Author

Listed:
  • Pachauri, Rupendra Kumar
  • Chauhan, Yogesh K.

Abstract

This paper presents a novel comparative study on fuel cells (FCs) technologies, its modeling and effect of important parameters on the performance of various types of fuel cells and power management schemes. Firstly, this paper presents a comprehensive review of various FCs technologies with their working principle, efficiency, operating parameters, advantages/disadvantages and applications. Secondly, the mathematical analysis of various FCs has been investigated, which is required for MATLAB simulation of FCs. The influences of various operating parameters such as temperature, reactant flow pressure and membrane resistance are considered to investigate the dynamic behavior of FCs. Thirdly, various control schemes of power management e.g., current, voltage, power and reactants flow pressure based control schemes are proposed with simple and easy to implement PI controller for a phosphoric acid fuel cell (PAFC) operation in this paper. These control mechanisms can be utilized for power management schemes. The proposed model of PAFC along with these control schemes is realized in the MATLAB/Simulink environment. The performance of a PAFC system along with these proposed control is found to be satisfactory even under dynamic conditions. The study can be broadly helpful to select and set the various parameters for the development of a FC based application.

Suggested Citation

  • Pachauri, Rupendra Kumar & Chauhan, Yogesh K., 2015. "A study, analysis and power management schemes for fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1301-1319.
  • Handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:1301-1319
    DOI: 10.1016/j.rser.2014.11.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114010454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.11.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peters, R. & Samsun, R.C., 2013. "Evaluation of multifunctional fuel cell systems in aviation using a multistep process analysis methodology," Applied Energy, Elsevier, vol. 111(C), pages 46-63.
    2. Ascoli, A. & Pandya, J.D. & Redaelli, G., 1989. "Electrical characterization of a 2.5 kW phosphoric acid fuel cell stack operating on simulated reformed biogas," Energy, Elsevier, vol. 14(12), pages 875-878.
    3. Miki, H. & Shimizu, A., 1998. "Dynamic characteristics of phosphoric-acid fuel-cell stack cooling system," Applied Energy, Elsevier, vol. 61(1), pages 41-56, September.
    4. Ma, Jia & Choudhury, Nurul A. & Sahai, Yogeshwar, 2010. "A comprehensive review of direct borohydride fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 183-199, January.
    5. Ghouse, M. & Abaoud, H. & Al-Boeiz, A. & AbdulHadi, M., 1998. "Development of a 1 kW Phosphoric Acid Fuel Cell stack," Applied Energy, Elsevier, vol. 60(3), pages 153-167, July.
    6. Bajpai, Prabodh & Dash, Vaishalee, 2012. "Hybrid renewable energy systems for power generation in stand-alone applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2926-2939.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benmouna, A. & Becherif, M. & Boulon, L. & Dépature, C. & Ramadan, Haitham S., 2021. "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control," Renewable Energy, Elsevier, vol. 178(C), pages 1291-1302.
    2. Zhang, Tie-qing & Malik, Fawad Rahim & Jung, Seunghun & Kim, Young-Bae, 2022. "Hydrogen production and temperature control for DME autothermal reforming process," Energy, Elsevier, vol. 239(PA).
    3. Luca Del Zotto & Andrea Monforti Ferrario & Arda Hatunoglu & Alessandro Dell’Era & Stephen McPhail & Enrico Bocci, 2021. "Experimental Procedures & First Results of an Innovative Solid Oxide Fuel Cell Test Rig: Parametric Analysis and Stability Test," Energies, MDPI, vol. 14(8), pages 1-19, April.
    4. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2013. "Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 453-463.
    3. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    4. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    5. Boyacı San, Fatma Gül & Okur, Osman & İyigün Karadağ, Çiğdem & Isik-Gulsac, Isil & Okumuş, Emin, 2014. "Evaluation of operating conditions on DBFC (direct borohydride fuel cell) performance with PtRu anode catalyst by response surface method," Energy, Elsevier, vol. 71(C), pages 160-169.
    6. Nithya Saiprasad & Akhtar Kalam & Aladin Zayegh, 2019. "Triple Bottom Line Analysis and Optimum Sizing of Renewable Energy Using Improved Hybrid Optimization Employing the Genetic Algorithm: A Case Study from India," Energies, MDPI, vol. 12(3), pages 1-23, January.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    9. Raghid Farhat & Nesreen K. Ghaddar & Kamel Ghali, 2014. "Investing in PV Systems utilizing Savings from Building Envelop Replacement by Sustainable Local Material: A Case Study in Lebanese Inland Region," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 554-567.
    10. Shabir Ahmad & Israr Ullah & Faisal Jamil & DoHyeun Kim, 2020. "Toward the Optimal Operation of Hybrid Renewable Energy Resources in Microgrids," Energies, MDPI, vol. 13(20), pages 1-19, October.
    11. Diab, Fahd & Lan, Hai & Ali, Salwa, 2016. "Novel comparison study between the hybrid renewable energy systems on land and on ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 452-463.
    12. Ackermann, Simon & Szabo, Andrei & Bamberger, Joachim & Steinke, Florian, 2022. "Design and optimization of performance guarantees for hybrid power plants," Energy, Elsevier, vol. 239(PA).
    13. Chen, Xiaohang & Wang, Yuan & Zhao, Yingru & Zhou, Yinghui, 2016. "A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system," Energy, Elsevier, vol. 101(C), pages 359-365.
    14. Joshua M. Pearce & Richard Parncutt, 2023. "Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy," Energies, MDPI, vol. 16(16), pages 1-20, August.
    15. Cheng, Yu-Shan & Chuang, Man-Tsai & Liu, Yi-Hua & Wang, Shun-Chung & Yang, Zong-Zhen, 2016. "A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint," Renewable Energy, Elsevier, vol. 88(C), pages 58-72.
    16. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    17. Pérez-Navarro, A. & Alfonso, D. & Ariza, H.E. & Cárcel, J. & Correcher, A. & Escrivá-Escrivá, G. & Hurtado, E. & Ibáñez, F. & Peñalvo, E. & Roig, R. & Roldán, C. & Sánchez, C. & Segura, I. & Vargas, C, 2016. "Experimental verification of hybrid renewable systems as feasible energy sources," Renewable Energy, Elsevier, vol. 86(C), pages 384-391.
    18. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    19. Urtasun, Andoni & Sanchis, Pablo & Barricarte, David & Marroyo, Luis, 2014. "Energy management strategy for a battery-diesel stand-alone system with distributed PV generation based on grid frequency modulation," Renewable Energy, Elsevier, vol. 66(C), pages 325-336.
    20. Ouedraogo, Bachir I. & Kouame, S. & Azoumah, Y. & Yamegueu, D., 2015. "Incentives for rural off grid electrification in Burkina Faso using LCOE," Renewable Energy, Elsevier, vol. 78(C), pages 573-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:1301-1319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.