IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v40y2014icp597-607.html
   My bibliography  Save this article

Offshore renewable energy in the Adriatic Sea with respect to the Croatian 2020 energy strategy

Author

Listed:
  • Hadžić, Neven
  • Kozmar, Hrvoje
  • Tomić, Marko

Abstract

July 1st 2013 Croatia joined the European Union (EU). During the acceding process the Croatian government strongly committed to an intensive development in the renewable energy sector. In particular, each EU member state is supposed to reach the mandatory 20% share of renewable sources in the total energy consumption by the year 2020, which goal now applies to Croatia as well. At this point, a significant Croatian renewable energy source is hydro power. However, it is at its peak and does not have a potential for further development due to limited natural hydro resources. On the other hand, onshore wind farms developed strongly in the past decade, with their limit in the sight though, as the most licenses for potential wind farm locations are already awarded by the Croatian government. At this point there is not a single offshore renewable energy power plant available in the Croatian part of the Adriatic Sea indicating an interesting possibility in that direction. Hence, in this study, we analyze a potential for development of an offshore renewable energy power plant in the Croatian part of the Adriatic Sea with likely implication on the environment and economy. We particularly focus on technology that would exploit the kinetic energy of wind and sea currents, whereas structural design issues, wind and tidal potential, sea depths, and sea traffic routes were thoroughly analyzed in order to identify the potential locations for the proposed renewable energy concepts. Electrical energy output is calculated and potential technical issues identified in order to highlight expected environmental and social benefits of such a challenging task as it is designing, manufacturing and maintaining of an offshore power plant in the Croatian part of the Adriatic Sea.

Suggested Citation

  • Hadžić, Neven & Kozmar, Hrvoje & Tomić, Marko, 2014. "Offshore renewable energy in the Adriatic Sea with respect to the Croatian 2020 energy strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 597-607.
  • Handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:597-607
    DOI: 10.1016/j.rser.2014.07.196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211400656X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jinjin, 2011. "Development of offshore wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5013-5020.
    2. Nguyen, Trinh Hoang & Prinz, Andreas & Friisø, Trond & Nossum, Rolf & Tyapin, Ilya, 2013. "A framework for data integration of offshore wind farms," Renewable Energy, Elsevier, vol. 60(C), pages 150-161.
    3. O’Keeffe, Aoife & Haggett, Claire, 2012. "An investigation into the potential barriers facing the development of offshore wind energy in Scotland: Case study – Firth of Forth offshore wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3711-3721.
    4. Bilgili, Mehmet & Yasar, Abdulkadir & Simsek, Erdogan, 2011. "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 905-915, February.
    5. Perveen, Rehana & Kishor, Nand & Mohanty, Soumya R., 2014. "Off-shore wind farm development: Present status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 780-792.
    6. Lee, Myung Eun & Kim, Gunwoo & Jeong, Shin-Taek & Ko, Dong Hui & Kang, Keum Seok, 2013. "Assessment of offshore wind energy at Younggwang in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 131-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tena Bujas & Marija Koričan & Manuela Vukić & Vladimir Soldo & Nikola Vladimir & Ailong Fan, 2022. "Review of Energy Consumption by the Fish Farming and Processing Industry in Croatia and the Potential for Zero-Emissions Aquaculture," Energies, MDPI, vol. 15(21), pages 1-26, November.
    2. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    3. Zheng, Chong Wei & Li, Chong Yin & Pan, Jing & Liu, Ming Yang & Xia, Lin Lin, 2016. "An overview of global ocean wind energy resource evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1240-1251.
    4. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    5. Fang, Xinli & Yang, Qiang & Dong, Wei, 2018. "Fuzzy decision based energy dispatch in offshore industrial microgrid with desalination process and multi-type DGs," Energy, Elsevier, vol. 148(C), pages 744-755.
    6. Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
    7. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xin-gang & Ren, Ling-zhi, 2015. "Focus on the development of offshore wind power in China: Has the golden period come?," Renewable Energy, Elsevier, vol. 81(C), pages 644-657.
    2. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    3. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    4. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    5. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    6. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    7. Georgiou, Isabella & Areal, Francisco J., 2015. "Economic valuation of an offshore wind farm in Greece: The role of individual׳s base-state influences and beliefs in the value formation process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 717-724.
    8. Brzezińska-Rawa, Anna & Goździewicz-Biechońska, Justyna, 2014. "Recent developments in the wind energy sector in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 79-87.
    9. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Zheng, Chong Wei & Li, Chong Yin & Pan, Jing & Liu, Ming Yang & Xia, Lin Lin, 2016. "An overview of global ocean wind energy resource evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1240-1251.
    11. Dimitra G. Vagiona & Manos Kamilakis, 2018. "Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    12. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    13. Li, Xiaodong & Ouelhadj, Djamila & Song, Xiang & Jones, Dylan & Wall, Graham & Howell, Kerry E. & Igwe, Paul & Martin, Simon & Song, Dongping & Pertin, Emmanuel, 2016. "A decision support system for strategic maintenance planning in offshore wind farms," Renewable Energy, Elsevier, vol. 99(C), pages 784-799.
    14. Apostolos Tsouvalas, 2020. "Underwater Noise Emission Due to Offshore Pile Installation: A Review," Energies, MDPI, vol. 13(12), pages 1-41, June.
    15. Sovacool, Benjamin K. & Enevoldsen, Peter, 2015. "One style to build them all: Corporate culture and innovation in the offshore wind industry," Energy Policy, Elsevier, vol. 86(C), pages 402-415.
    16. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    17. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    18. He, Zheng-Xia & Xu, Shi-Chun & Shen, Wen-Xing & Zhang, Hui & Long, Ru-Yin & Yang, He & Chen, Hong, 2016. "Review of factors affecting China’s offshore wind power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1372-1386.
    19. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    20. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:597-607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.