IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v27y2013icp401-406.html
   My bibliography  Save this article

Plug-in driven architecture for renewable energy generation monitoring

Author

Listed:
  • Villasevil, F. Xavier
  • Vigara, Julio E.
  • Chiarle, Lautaro

Abstract

This paper is about the benefits of a plug-in based software architecture, but it is not only intended for programmers. It also stands the fact that monitoring is needed in any renewable energy generation plant and describes a way to fulfill this need.

Suggested Citation

  • Villasevil, F. Xavier & Vigara, Julio E. & Chiarle, Lautaro, 2013. "Plug-in driven architecture for renewable energy generation monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 401-406.
  • Handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:401-406
    DOI: 10.1016/j.rser.2013.06.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113004395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.06.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koutroulis, Eftichios & Kalaitzakis, Kostas, 2003. "Development of an integrated data-acquisition system for renewable energy sources systems monitoring," Renewable Energy, Elsevier, vol. 28(1), pages 139-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    2. Guerrero-Rodríguez, N.F. & Rey-Boué, Alexis B. & Bueno, E.J. & Ortiz, Octavio & Reyes-Archundia, Enrique, 2017. "Synchronization algorithms for grid-connected renewable systems: Overview, tests and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 629-643.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gad, H.E. & Gad, Hisham E., 2015. "Development of a new temperature data acquisition system for solar energy applications," Renewable Energy, Elsevier, vol. 74(C), pages 337-343.
    2. Abolfazl Shiroudi & Seyed Taklimi & Seyed Mousavifar & Peyman Taghipour, 2013. "Stand-alone PV-hydrogen energy system in Taleghan-Iran using HOMER software: optimization and techno-economic analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(5), pages 1389-1402, October.
    3. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    4. Amor Hamied & Adel Mellit & Mohamed Benghanem & Sahbi Boubaker, 2023. "IoT-Based Low-Cost Photovoltaic Monitoring for a Greenhouse Farm in an Arid Region," Energies, MDPI, vol. 16(9), pages 1-21, April.
    5. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2007. "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," Renewable Energy, Elsevier, vol. 32(2), pages 285-313.
    6. Francisco José Gimeno-Sales & Salvador Orts-Grau & Alejandro Escribá-Aparisi & Pablo González-Altozano & Ibán Balbastre-Peralta & Camilo Itzame Martínez-Márquez & María Gasque & Salvador Seguí-Chilet, 2020. "PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    7. Touati, Farid & Al-Hitmi, M.A. & Chowdhury, Noor Alam & Hamad, Jehan Abu & San Pedro Gonzales, Antonio J.R., 2016. "Investigation of solar PV performance under Doha weather using a customized measurement and monitoring system," Renewable Energy, Elsevier, vol. 89(C), pages 564-577.
    8. Mellit, Adel & Kalogirou, Soteris A., 2011. "ANFIS-based modelling for photovoltaic power supply system: A case study," Renewable Energy, Elsevier, vol. 36(1), pages 250-258.
    9. Ammar Mahjoubi & Ridha Fethi Mechlouch & Ammar Ben Brahim, 2011. "A Low Cost Wireless Data Acquisition System for a Remote Photovoltaic (PV) Water Pumping System," Energies, MDPI, vol. 4(1), pages 1-22, January.
    10. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    11. Touati, Farid & Chowdhury, Noor Alam & Benhmed, Kamel & San Pedro Gonzales, Antonio J.R. & Al-Hitmi, Mohammed A. & Benammar, Mohieddine & Gastli, Adel & Ben-Brahim, Lazhar, 2017. "Long-term performance analysis and power prediction of PV technology in the State of Qatar," Renewable Energy, Elsevier, vol. 113(C), pages 952-965.
    12. López-Vargas, Ascensión & Fuentes, Manuel & Vivar, Marta, 2021. "Current challenges for the advanced mass scale monitoring of Solar Home Systems: A review," Renewable Energy, Elsevier, vol. 163(C), pages 2098-2114.
    13. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    14. Ziogou, Chrysovalantou & Ipsakis, Dimitris & Seferlis, Panos & Bezergianni, Stella & Papadopoulou, Simira & Voutetakis, Spyros, 2013. "Optimal production of renewable hydrogen based on an efficient energy management strategy," Energy, Elsevier, vol. 55(C), pages 58-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:401-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.