Author
Listed:
- Asgari, Nima
- Hayibo, Koami Soulemane
- Groza, Julia
- Rana, Shafquat
- Pearce, Joshua M.
Abstract
Greenhouses play a crucial role in food production and economic growth in northern regions but contribute significantly to energy consumption and carbon emissions. To address this challenge and enhance food production sustainably, there is a growing need for efficient and renewable energy solutions. Low-carbon heating in greenhouses will be achievable by using heat pumps powered by cost-effective renewable energy sources such as photovoltaic systems. This study introduces an open-source quasi-steady-state thermal model for greenhouses, non-ideal air-source heat pumps (ASHPs), and ground-source heat pumps (GSHPs) with both vertical (V) and horizontal (H) ground heat exchangers. Additionally, a ventilation sub-model is provided to manage cooling loads for residential, semi-commercial, and commercial greenhouses. Furthermore, an open-source SAM-Python-based photovoltaic system model is developed to size photovoltaic arrays for powering the heat pumps. The study reveals a nonlinear relationship between greenhouse size and annual thermal loads. It also demonstrates that ASHPs exhibit the lowest efficiency (COPh = 2.52, EERc = 9.00), followed by VGSHPs (COPh = 3.68, EERc = 19.88), with HGSHPs being the most efficient (COPh = 3.79, EERc = 19.48) for the Canadian case study. The required on-grid photovoltaic ratings to power HGSHPs, VGSHPs, and ASHPs respectively are 2.16, 2.17, and 2.64 kW for residential, 103, 104, and 128 kW for semi-commercial, and 827, 831, and 1,028 kW for commercial greenhouses. Self-consumption of designed photovoltaic systems ranges from 23.5 % to 25.1 %, with self-sufficiency varying between 23.7 % and 26.0 %. The size of the photovoltaic system is competitive with similar scenarios; however, future studies are needed to conduct an economic analysis while simulating the dynamic loads of greenhouses.
Suggested Citation
Asgari, Nima & Hayibo, Koami Soulemane & Groza, Julia & Rana, Shafquat & Pearce, Joshua M., 2025.
"Greenhouse applications of solar photovoltaic driven heat pumps in northern environments,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
Handle:
RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006464
DOI: 10.1016/j.rser.2024.114920
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006464. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.