IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v205y2024ics1364032124005495.html
   My bibliography  Save this article

Predicting the effects of solar energy development on plants and wildlife in the Desert Southwest, United States

Author

Listed:
  • Karban, Claire C.
  • Lovich, Jeffrey E.
  • Grodsky, Steven M.
  • Munson, Seth M.

Abstract

Utility-scale solar energy (USSE) is rapidly expanding and expected to compose the largest source of renewable-generated electricity in the United States and globally over the coming decades. Lands in the hot Desert Southwest (Chihuahuan, Mojave, Sonoran, and San Joaquin Deserts) are increasingly selected for USSE development because of their high solar irradiance. The Desert Southwest supports high biodiversity and provides many ecosystem services but is vulnerable to USSE disturbance and simultaneous stress from aridification and other growing land-use pressures. In this review, a framework is presented for predicting the effects of USSE development on plants and wildlife by linking disturbance types associated with USSE construction and operation to the traits and response strategies of species and guilds. Case studies from representative Desert Southwest species and guilds of conservation concern are used to: review known effects of USSE, predict unknown effects with the trait-based framework, and discuss mitigation strategies. This framework predicts that species with trait plasticity and broad ecological niches will be capable of exploiting USSE development, while species with specific habitat requirements and narrow niches will be more vulnerable. Opportunities for mitigation during development and operation that may lessen these effects are identified. This work is intended to inform USSE management decision-making and long-term planning, as well as encourage new research to test predicted effects and responses.

Suggested Citation

  • Karban, Claire C. & Lovich, Jeffrey E. & Grodsky, Steven M. & Munson, Seth M., 2024. "Predicting the effects of solar energy development on plants and wildlife in the Desert Southwest, United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005495
    DOI: 10.1016/j.rser.2024.114823
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamara Wynne-Sison & Dale A. Devitt & Stanley D. Smith, 2023. "Ecovoltaics: Maintaining Native Plants and Wash Connectivity inside a Mojave Desert Solar Facility Leads to Favorable Growing Conditions," Land, MDPI, vol. 12(10), pages 1-24, October.
    2. Stoms, David M. & Dashiell, Stephanie L. & Davis, Frank W., 2013. "Siting solar energy development to minimize biological impacts," Renewable Energy, Elsevier, vol. 57(C), pages 289-298.
    3. Greg A. Barron-Gafford & Mitchell A. Pavao-Zuckerman & Rebecca L. Minor & Leland F. Sutter & Isaiah Barnett-Moreno & Daniel T. Blackett & Moses Thompson & Kirk Dimond & Andrea K. Gerlak & Gary P. Nabh, 2019. "Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands," Nature Sustainability, Nature, vol. 2(9), pages 848-855, September.
    4. Scott R. Abella, 2010. "Disturbance and Plant Succession in the Mojave and Sonoran Deserts of the American Southwest," IJERPH, MDPI, vol. 7(4), pages 1-37, March.
    5. Steven M. Grodsky & Rebecca R. Hernandez, 2020. "Reduced ecosystem services of desert plants from ground-mounted solar energy development," Nature Sustainability, Nature, vol. 3(12), pages 1036-1043, December.
    6. Visser, Elke & Perold, Vonica & Ralston-Paton, Samantha & Cardenal, Alvaro C. & Ryan, Peter G., 2019. "Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa," Renewable Energy, Elsevier, vol. 133(C), pages 1285-1294.
    7. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    8. Ana Mercedes Heredia-Velásquez & Ana Giraldo-Silva & Corey Nelson & Julie Bethany & Patrick Kut & Luis González-de-Salceda & Ferran Garcia-Pichel, 2023. "Dual use of solar power plants as biocrust nurseries for large-scale arid soil restoration," Nature Sustainability, Nature, vol. 6(8), pages 955-964, August.
    9. Walston, Leroy J. & Rollins, Katherine E. & LaGory, Kirk E. & Smith, Karen P. & Meyers, Stephanie A., 2016. "A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States," Renewable Energy, Elsevier, vol. 92(C), pages 405-414.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hsiao-Wen & Dodd, Adrienne & Ko, Yekang, 2022. "Resolving the conflict of greens: A GIS-based and participatory least-conflict siting framework for solar energy development in southwest Taiwan," Renewable Energy, Elsevier, vol. 197(C), pages 879-892.
    2. Jeffrey Vervloesem & Ernesto Marcheggiani & MD Abdul Mueed Choudhury & Bart Muys, 2022. "Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity," Sustainability, MDPI, vol. 14(12), pages 1-31, June.
    3. Hori, Keiko & Matsui, Takanori & Hasuike, Takashi & Fukui, Ken-ichi & Machimura, Takashi, 2016. "Development and application of the renewable energy regional optimization utility tool for environmental sustainability: REROUTES," Renewable Energy, Elsevier, vol. 93(C), pages 548-561.
    4. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    5. Alexandra Vrînceanu & Ines Grigorescu & Monica Dumitrașcu & Irena Mocanu & Cristina Dumitrică & Dana Micu & Gheorghe Kucsicsa & Bianca Mitrică, 2019. "Impacts of Photovoltaic Farms on the Environment in the Romanian Plain," Energies, MDPI, vol. 12(13), pages 1-18, July.
    6. Randle-Boggis, R.J. & White, P.C.L. & Cruz, J. & Parker, G. & Montag, H. & Scurlock, J.M.O. & Armstrong, A., 2020. "Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    7. Li, Xiaochun & He, Ze & Xia, Siyou & Yang, Yu, 2024. "Greenness change associated with construction and operation of photovoltaic solar energy in China," Renewable Energy, Elsevier, vol. 226(C).
    8. Visser, Elke & Perold, Vonica & Ralston-Paton, Samantha & Cardenal, Alvaro C. & Ryan, Peter G., 2019. "Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa," Renewable Energy, Elsevier, vol. 133(C), pages 1285-1294.
    9. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    10. Hermoso, Virgilio & Bota, Gerard & Brotons, Lluis & Morán-Ordóñez, Alejandra, 2023. "Addressing the challenge of photovoltaic growth: Integrating multiple objectives towards sustainable green energy development," Land Use Policy, Elsevier, vol. 128(C).
    11. Choi, Chong Seok & Ravi, Sujith & Siregar, Iskandar Z. & Dwiyanti, Fifi Gus & Macknick, Jordan & Elchinger, Michael & Davatzes, Nicholas C., 2021. "Combined land use of solar infrastructure and agriculture for socioeconomic and environmental co-benefits in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    13. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    16. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    17. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    18. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Ye, Tiange & Zhou, Xiyin, 2022. "Effects of fishery complementary photovoltaic power plant on near-surface meteorology and energy balance," Renewable Energy, Elsevier, vol. 187(C), pages 698-709.
    19. Taylor, M. & Pettit, J. & Sekiyama, T. & Sokołowski, M.M., 2023. "Justice-driven agrivoltaics: Facilitating agrivoltaics embedded in energy justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.