IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp879-892.html
   My bibliography  Save this article

Resolving the conflict of greens: A GIS-based and participatory least-conflict siting framework for solar energy development in southwest Taiwan

Author

Listed:
  • Wang, Hsiao-Wen
  • Dodd, Adrienne
  • Ko, Yekang

Abstract

Transitioning to renewable energy is vital to reduce greenhouse gasses and mitigate climate change. As large-scale renewable energy development expands, more land use conflicts are arising between renewable energy development, ecological conservation, and local communities. Spatial planning methods are becoming more widely used to address such conflicts, however, they often lack local community input and values. In this study, we develop a Participatory Least Conflict Solar Energy Siting Framework based on energy justice theory which uses place-based stakeholder engagement paired with Analytical Hierarchy Process (AHP) and Geographic Information System (GIS) based multi-criteria decision making. We operationalize a case study in Southwestern Taiwan to identify and evaluate suitable solar development sites and demonstrate how the framework can be used. The results of our AHP surveys show a general consensus that protecting the natural environment is important as the top three prioritized factors: “Avoid Environmental Protected Land”, with a priority of 20.8%, “Avoid Other Important Natural Areas”, with a priority of 11.9%, and “Avoid Other Natural Areas” with a priority of 8.2%. In addition, if only 12% of the land with medium to high suitability are developed for solar energy generation, Tainan City and Chiayi County alone could support the Taiwan government's solar development goal of 20 GW of installed solar capacity for the entire country by 2025. Our study also reveals that the use of participatory methods in site evaluation and final site design is important to ensure true suitability with local ecological, social, and economic systems. This methodology helps to normalize a more holistic multi-goal strategy of solar development that recognizes renewable energy infrastructure as part of a social-ecological-technical systems and Climate Justice. We suggest this framework be used to address the spatial mismatch between national level policy and local implementation that supports place-based renewable energy collocation for energy democracy and community ownership, and develop policy and regulations to support a just transition toward carbon neutrality.

Suggested Citation

  • Wang, Hsiao-Wen & Dodd, Adrienne & Ko, Yekang, 2022. "Resolving the conflict of greens: A GIS-based and participatory least-conflict siting framework for solar energy development in southwest Taiwan," Renewable Energy, Elsevier, vol. 197(C), pages 879-892.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:879-892
    DOI: 10.1016/j.renene.2022.07.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfram Krewitt & Joachim Nitsch & Guido Reinhardt, 2005. "Renewable energies: between climate protection and nature conservation?," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 23(1), pages 29-42.
    2. John K. Horowitz & Richard E. Just & Sinaia Netanyahu, 1996. "Potential Benefits and Limitations of Game Theory in Agricultural Economics," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(3), pages 753-760.
    3. Kim, Soullam & Lee, Yuhwa & Moon, Hak-Ryong, 2018. "Siting criteria and feasibility analysis for PV power generation projects using road facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3061-3069.
    4. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    5. Pringle, Adam M. & Handler, R.M. & Pearce, J.M., 2017. "Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 572-584.
    6. Meryem Tahri & Mustapha Hakdaoui & Mohamed Maanan, 2015. "The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco," Post-Print hal-01185533, HAL.
    7. Hastik, Richard & Basso, Stefano & Geitner, Clemens & Haida, Christin & Poljanec, Aleš & Portaccio, Alessia & Vrščaj, Borut & Walzer, Chris, 2015. "Renewable energies and ecosystem service impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 608-623.
    8. Charabi, Yassine & Gastli, Adel, 2011. "PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation," Renewable Energy, Elsevier, vol. 36(9), pages 2554-2561.
    9. Tahri, Meryem & Hakdaoui, Mustapha & Maanan, Mohamed, 2015. "The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1354-1362.
    10. Stoms, David M. & Dashiell, Stephanie L. & Davis, Frank W., 2013. "Siting solar energy development to minimize biological impacts," Renewable Energy, Elsevier, vol. 57(C), pages 289-298.
    11. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    12. Dupraz, C. & Marrou, H. & Talbot, G. & Dufour, L. & Nogier, A. & Ferard, Y., 2011. "Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes," Renewable Energy, Elsevier, vol. 36(10), pages 2725-2732.
    13. Greg A. Barron-Gafford & Mitchell A. Pavao-Zuckerman & Rebecca L. Minor & Leland F. Sutter & Isaiah Barnett-Moreno & Daniel T. Blackett & Moses Thompson & Kirk Dimond & Andrea K. Gerlak & Gary P. Nabh, 2019. "Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands," Nature Sustainability, Nature, vol. 2(9), pages 848-855, September.
    14. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    15. Kyle W. Proctor & Ganti S. Murthy & Chad W. Higgins, 2020. "Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy," Sustainability, MDPI, vol. 13(1), pages 1-11, December.
    16. Alami Merrouni, Ahmed & Elwali Elalaoui, Fakhreddine & Mezrhab, Ahmed & Mezrhab, Abdelhamid & Ghennioui, Abdellatif, 2018. "Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco," Renewable Energy, Elsevier, vol. 119(C), pages 863-873.
    17. Rebecca R. Hernandez & Madison K. Hoffacker & Christopher B. Field, 2015. "Efficient use of land to meet sustainable energy needs," Nature Climate Change, Nature, vol. 5(4), pages 353-358, April.
    18. Wu, Jung-Hua & Huang, Yun-Hsun, 2014. "Electricity portfolio planning model incorporating renewable energy characteristics," Applied Energy, Elsevier, vol. 119(C), pages 278-287.
    19. Günen, Mehmet Akif, 2021. "A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey," Renewable Energy, Elsevier, vol. 178(C), pages 212-225.
    20. Brewer, Justin & Ames, Daniel P. & Solan, David & Lee, Randy & Carlisle, Juliet, 2015. "Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability," Renewable Energy, Elsevier, vol. 81(C), pages 825-836.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    2. Zambrano-Asanza, S. & Quiros-Tortos, J. & Franco, John F., 2021. "Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    4. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    5. Noorollahi, Younes & Ghenaatpisheh Senani, Ali & Fadaei, Ahmad & Simaee, Mobina & Moltames, Rahim, 2022. "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, Elsevier, vol. 186(C), pages 89-104.
    6. Majumdar, Debaleena & Pasqualetti, Martin J., 2019. "Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA," Renewable Energy, Elsevier, vol. 134(C), pages 1213-1231.
    7. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    8. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    9. Zhang, Zhengjia & Wang, Qingxiang & Liu, Zhengguang & Chen, Qi & Guo, Zhiling & Zhang, Haoran, 2023. "Renew mineral resource-based cities: Assessment of PV potential in coal mining subsidence areas," Applied Energy, Elsevier, vol. 329(C).
    10. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    11. Nili, Maryam & Seyedhosseini, Seyed Mohammad & Jabalameli, Mohammad Saeed & Dehghani, Ehsan, 2021. "A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Minaei, Foad & Minaei, Masoud & Kougias, Ioannis & Shafizadeh-Moghadam, Hossein & Hosseini, Seyed Ali, 2021. "Rural electrification in protected areas: A spatial assessment of solar photovoltaic suitability using the fuzzy best worst method," Renewable Energy, Elsevier, vol. 176(C), pages 334-345.
    13. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    14. Hossein Yousefi & Hamed Hafeznia & Amin Yousefi-Sahzabi, 2018. "Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran," Energies, MDPI, vol. 11(7), pages 1-18, June.
    15. Jiang, Wei & Zhang, Shuo & Wang, Teng & Zhang, Yufei & Sha, Aimin & Xiao, Jingjing & Yuan, Dongdong, 2024. "Evaluation method for the availability of solar energy resources in road areas before route corridor planning," Applied Energy, Elsevier, vol. 356(C).
    16. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
    17. López-Bravo, Celia & Mora-López, Llanos & Sidrach-deCardona, Mariano & Márquez-Ballesteros, María José, 2024. "A comprehensive analysis based on GIS-AHP to minimise the social and environmental impact of the installation of large-scale photovoltaic plants in south Spain," Renewable Energy, Elsevier, vol. 226(C).
    18. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    19. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    20. Randle-Boggis, R.J. & White, P.C.L. & Cruz, J. & Parker, G. & Montag, H. & Scurlock, J.M.O. & Armstrong, A., 2020. "Realising co-benefits for natural capital and ecosystem services from solar parks: A co-developed, evidence-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:879-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.