IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v200y2024ics1364032124003010.html
   My bibliography  Save this article

A holistic life cycle assessment of steel bridge deck pavement

Author

Listed:
  • Zhang, Z.H.
  • Huang, W.
  • Lu, G.Y.
  • Luo, S.

Abstract

Transportation serves as a cornerstone of economic development and is a significant contributor to carbon emissions. This study established a life cycle assessment model that incorporates refined carbon emission calculation parameters, streamlining the computation process while maintaining precision. A case study was conducted to quantify the life-cycle CO2 emissions of steel bridge deck pavements, a pivotal component within the transport network. The study suggests using the average annual CO2 emissions as a metric to gauge the carbon emission potential of steel bridge deck pavements with different service lives. This study addresses a void in the existing work by standardizing the grading of typical pavement diseases and quantifying the carbon emissions of the corresponding maintenance measures. It reveals that the pivotal determinant of life-cycle CO2 emissions for steel bridge deck pavements is the service performance of the paving material. Comparative analysis indicates that epoxy asphalt concrete could be deemed a low-carbon material, achieving a 77.6% reduction in life-cycle carbon emissions compared to gussasphalt concrete. Emissions during the maintenance phase constitute 66.7%–71.4% of the total life-cycle emissions, predominantly due to end-of-life and traffic delay units. The methodology and calculated data presented herein can inform subsequent carbon reduction strategies in transportation and promote the development of resilient infrastructure, thus making a substantial contribution towards carbon neutrality and climate change mitigation.

Suggested Citation

  • Zhang, Z.H. & Huang, W. & Lu, G.Y. & Luo, S., 2024. "A holistic life cycle assessment of steel bridge deck pavement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124003010
    DOI: 10.1016/j.rser.2024.114575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124003010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wendan Zhang & Jian Lu & Ping Xu & Yi Zhang, 2015. "Moving towards Sustainability: Road Grades and On-Road Emissions of Heavy-Duty Vehicles—A Case Study," Sustainability, MDPI, vol. 7(9), pages 1-28, September.
    2. Patel, M., 2003. "Cumulative energy demand (CED) and cumulative CO2 emissions for products of the organic chemical industry," Energy, Elsevier, vol. 28(7), pages 721-740.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wu & Wanjing Ma & Kejun Long & Heping Zhou & Yi Zhang, 2016. "Designing Sustainable Public Transportation: Integrated Optimization of Bus Speed and Holding Time in a Connected Vehicle Environment," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    2. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.
    3. Jessimon Ferreira & Dana I. Andrade & Maria E. K. Fuziki & Lariana N. B. de Almeida & Leda M. S. Colpini & Giane G. Lenzi & Angelo M. Tusset, 2022. "Catalytic Systems in the Reduction of Nitrogen Oxide Emissions in Diesel-Powered Trucks," Sustainability, MDPI, vol. 14(11), pages 1-12, May.
    4. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    5. Boshuai Zhao & Juliang Zhang & Wenchao Wei, 2019. "Impact of Time Restriction and Logistics Sprawl on Urban Freight and Environment: The Case of Beijing Agricultural Freight," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    6. Fahd, S. & Fiorentino, G. & Mellino, S. & Ulgiati, S., 2012. "Cropping bioenergy and biomaterials in marginal land: The added value of the biorefinery concept," Energy, Elsevier, vol. 37(1), pages 79-93.
    7. Rebekka Volk & Christoph Stallkamp & Justus J. Steins & Savina Padumane Yogish & Richard C. Müller & Dieter Stapf & Frank Schultmann, 2021. "Techno‐economic assessment and comparison of different plastic recycling pathways: A German case study," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1318-1337, October.
    8. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
    9. Neelis, Maarten & Patel, Martin & Bach, Pieter & Blok, Kornelis, 2009. "Analysis of energy use and carbon losses in the chemical industry," Applied Energy, Elsevier, vol. 84(7-8), pages 853-862, July.
    10. Carlos E. Gómez-Camacho & Bernardo Ruggeri, 2019. "Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H 2 Production," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    11. Lv, Zongyan & Wu, Lin & Yang, Zhiwen & Yang, Lei & Fang, Tiange & Mao, Hongjun, 2023. "Comparison on real-world driving emission characteristics of CNG, LNG and Hybrid-CNG buses," Energy, Elsevier, vol. 262(PB).
    12. Ozalp, Nesrin & Hyman, Barry, 2007. "Allocation of energy inputs among the end-uses in the US petroleum and coal products industry," Energy, Elsevier, vol. 32(8), pages 1460-1470.
    13. Sofia Russo & Alicia Valero & Antonio Valero & Marta Iglesias-Émbil, 2021. "Exergy-Based Assessment of Polymers Production and Recycling: An Application to the Automotive Sector," Energies, MDPI, vol. 14(2), pages 1-19, January.
    14. Gang Du & Chuanwang Sun & Jinxian Weng, 2016. "Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation," Sustainability, MDPI, vol. 8(2), pages 1-15, February.
    15. Ren, Tao & Patel, Martin K. & Blok, Kornelis, 2008. "Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs," Energy, Elsevier, vol. 33(5), pages 817-833.
    16. Neelis, Maarten & Ramirez-Ramirez, Andrea & Patel, Martin & Farla, Jacco & Boonekamp, Piet & Blok, Kornelis, 2007. "Energy efficiency developments in the Dutch energy-intensive manufacturing industry, 1980-2003," Energy Policy, Elsevier, vol. 35(12), pages 6112-6131, December.
    17. Neelis, Maarten & Patel, Martin & Blok, Kornelis & Haije, Wim & Bach, Pieter, 2007. "Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes," Energy, Elsevier, vol. 32(7), pages 1104-1123.
    18. Alexandros T. Zachiotis & Evangelos G. Giakoumis, 2021. "Monte Carlo Simulation Methodology to Assess the Impact of Ambient Wind on Emissions from a Light-Commercial Vehicle Running on the Worldwide-Harmonized Light-Duty Vehicles Test Cycle (WLTC)," Energies, MDPI, vol. 14(3), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124003010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.