IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v198y2024ics1364032124001278.html
   My bibliography  Save this article

A narrative review to credible computational fluid dynamics models of naturally ventilated built environments

Author

Listed:
  • Hajdukiewicz, Magdalena
  • González Gallero, Francisco Javier
  • Mannion, Paul
  • Loomans, Marcel G.L.C.
  • Keane, Marcus M.

Abstract

This narrative review describes the capabilities of computational fluid dynamics (CFD) to support the scientific analysis of fluid flows inside buildings, focusing on natural ventilation. The challenges posed by CFD, such as mesh generation, boundary conditions specification, choice of turbulence or radiation models and the ability to estimate the accuracy of results are explored. For the first time, this work provides a summary of verification and validation studies relating to CFD models of different built environments, and detailed validation studies of naturally ventilated spaces. This review summarises the most common guidelines and conclusions drawn from literature relating to CFD modelling of indoor environments that are naturally ventilated.

Suggested Citation

  • Hajdukiewicz, Magdalena & González Gallero, Francisco Javier & Mannion, Paul & Loomans, Marcel G.L.C. & Keane, Marcus M., 2024. "A narrative review to credible computational fluid dynamics models of naturally ventilated built environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:rensus:v:198:y:2024:i:c:s1364032124001278
    DOI: 10.1016/j.rser.2024.114404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124001278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lingzhu Li & Xuehu Zhu & Lixing Zhu, 2023. "Adaptive-to-Model Hybrid of Tests for Regressions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 514-523, January.
    2. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Xizhong Shen & Ran Li, 2023. "BroadBand-Adaptive VMD with Flattest Response," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
    4. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Bhattacharyya, Suvanjan & Dey, Kunal & Paul, Akshoy Ranjan & Biswas, Ranjib, 2020. "A novel CFD analysis to minimize the spread of COVID-19 virus in hospital isolation room," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Ardalan Aflaki & Masoud Esfandiari & Saleh Mohammadi, 2021. "A Review of Numerical Simulation as a Precedence Method for Prediction and Evaluation of Building Ventilation Performance," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chrysa Politi & Antonis Peppas & Maria Taxiarchou, 2023. "Data-Driven Integrated Decision Model for Analysing Energetic Behaviour of Innovative Construction Materials Capable of Hybrid Energy Storage," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    2. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    3. Aldona Skotnicka-Siepsiak, 2021. "An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers," Energies, MDPI, vol. 15(1), pages 1-19, December.
    4. Mir Waqas Alam & Basma Souayeh, 2021. "Parametric CFD Thermal Performance Analysis of Full, Medium, Half and Short Length Dimple Solar Air Tube," Sustainability, MDPI, vol. 13(11), pages 1-30, June.
    5. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Rajkumar, G. & Saravanan, M. & Marimuthu, P., 2023. "Developing a numerical model to analyze the production process of PMEDM," Resources Policy, Elsevier, vol. 80(C).
    7. Wang, Qingyuan & Zhang, Guomin & Wu, Qihong & Li, Wenyuan & Shi, Long, 2022. "A combined wall and roof solar chimney in one building," Energy, Elsevier, vol. 240(C).
    8. Mutaz Suleiman & Ahmed Elshaer & Muntasir Billah & Mohammed Bassuony, 2021. "Propagation of Mouth-Generated Aerosols in a Modularly Constructed Hospital Room," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    9. Ka-Ming Wai & Peter K. N. Yu, 2023. "Application of a Machine Learning Method for Prediction of Urban Neighborhood-Scale Air Pollution," IJERPH, MDPI, vol. 20(3), pages 1-10, January.
    10. Siphiwe Mdlalose & Sipho Sibanda & Tilahun Workneh & Mark Laing, 2022. "Innovative Low-Cost Naturally Ventilated Maize Seed Storage System," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 8(1), pages 39-49, 01-2022.
    11. Zhou, Lili & Yin, Jun & Tan, Fei & Liao, Haibin, 2023. "Robustness analysis of edge-coupled interdependent networks under different attack strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    12. Gupta, V. & Deb, C., 2023. "Envelope design for low-energy buildings in the tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    13. Afaq Hyder Chohan & Jihad Awad, 2022. "Wind Catchers: An Element of Passive Ventilation in Hot, Arid and Humid Regions, a Comparative Analysis of Their Design and Function," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    14. Dariusz Bajno & Łukasz Bednarz & Agnieszka Grzybowska, 2021. "The Role and Place of Traditional Chimney System Solutions in Environmental Progress and in Reducing Energy Consumption," Energies, MDPI, vol. 14(16), pages 1-32, August.
    15. Murena, Fabio & Gaggiano, Imma & Mele, Benedetto, 2022. "Fluid dynamic performances of a solar chimney plant: Analysis of experimental data and CFD modelling," Energy, Elsevier, vol. 249(C).
    16. Zhang, Haihua & Tao, Yao & Zhang, Guomin & Li, Jie & Setunge, Sujeeva & Shi, Long, 2022. "Impacts of storey number of buildings on solar chimney performance: A theoretical and numerical approach," Energy, Elsevier, vol. 261(PA).
    17. Zhou, Kai & Leng, Jia-Wei, 2023. "State-of-the-art research of performance-driven architectural design for low-carbon urban underground space: Systematic review and proposed design strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    18. Amahjour, Narjisse & Sofi, Anas & Kamal, Tariq & El Kharrim, Abderrahman, 2024. "Investigating the impact of HVAC and Sanitizer system design on the transmission of SARS-CoV-2 in Hospital Isolation Units," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    19. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    20. Ardalan Aflaki & Masoud Esfandiari & Saleh Mohammadi, 2021. "A Review of Numerical Simulation as a Precedence Method for Prediction and Evaluation of Building Ventilation Performance," Sustainability, MDPI, vol. 13(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:198:y:2024:i:c:s1364032124001278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.