IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v194y2024ics1364032124000133.html
   My bibliography  Save this article

Review of factors affecting earthworks greenhouse gas emissions and fuel use

Author

Listed:
  • Roy, Adrien
  • McCabe, Brenda Y.
  • Saxe, Shoshanna
  • Posen, I. Daniel

Abstract

Research on greenhouse gas (GHG) emissions in the building sector has concentrated on the use phase of buildings, and more recently embodied emissions from construction materials. Much less research has focused on reducing GHG emissions from onsite fuel use during construction, in part because predicting and measuring fuel use is complex and lacks guidance to help modelers focus on key factors that drive variability in results. This paper addresses that challenge by examining the state-of-the-art in onsite fuel use accounting with a focus on earthworks, one of the largest drivers of onsite fuel consumption. It provides a comprehensive summary of the existing literature, describes and quantifies the ways in which factors influence fuel use, and fills several gaps identified during the review process by drawing from research in related fields. The result is a new taxonomy for categorizing fifteen factors which influence fuel use, including equipment factors (e.g., engine specifications, attachment selection), operational factors (e.g., operator skill, fleet configuration), and site factors (e.g., soil type, excavation depth). Drawing on earthwork productivity and productivity/fuel use in related fields (e.g., freight hauling, military equipment) to augment the construction emissions literature, most notably to investigate the influence of weather on earthwork GHG emissions. Across case studies, soil type, attachment selection, engine specifications, weather and hauling conditions arise as the most influential factors. Finally, this work presents recommendations for structured fuel use data collection to improve the consistency of future data collection and reporting, along with subsequent fuel use modelling and optimization efforts.

Suggested Citation

  • Roy, Adrien & McCabe, Brenda Y. & Saxe, Shoshanna & Posen, I. Daniel, 2024. "Review of factors affecting earthworks greenhouse gas emissions and fuel use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:rensus:v:194:y:2024:i:c:s1364032124000133
    DOI: 10.1016/j.rser.2024.114290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124000133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiayuan & Yuan, Hongping & Kang, Xiangping & Lu, Weisheng, 2010. "Critical success factors for on-site sorting of construction waste: A china study," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 931-936.
    2. Gary D. Holt & David Edwards, 2015. "Analysis of interrelationships among excavator productivity modifying factors," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 64(6), pages 853-869, July.
    3. Begum, Rawshan Ara & Siwar, Chamhuri & Pereira, Joy Jacqueline & Jaafar, Abdul Hamid, 2006. "A benefit–cost analysis on the economic feasibility of construction waste minimisation: The case of Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 48(1), pages 86-98.
    4. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    5. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    6. Hassanean S. H. Jassim & Weizhuo Lu & Thomas Olofsson, 2017. "Predicting Energy Consumption and CO 2 Emissions of Excavators in Earthwork Operations: An Artificial Neural Network Model," Sustainability, MDPI, vol. 9(7), pages 1-25, July.
    7. Milos Vukovic & Roland Leifeld & Hubertus Murrenhoff, 2017. "Reducing Fuel Consumption in Hydraulic Excavators—A Comprehensive Analysis," Energies, MDPI, vol. 10(5), pages 1-25, May.
    8. Tam, Vivian W.Y. & Tam, C.M., 2006. "A review on the viable technology for construction waste recycling," Resources, Conservation & Recycling, Elsevier, vol. 47(3), pages 209-221.
    9. Dixit, Manish K. & Fernández-Solís, Jose L. & Lavy, Sarel & Culp, Charles H., 2012. "Need for an embodied energy measurement protocol for buildings: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3730-3743.
    10. Sherif Mohamed & Korb Srinavin, 2002. "Thermal environment effects on construction workers’ productivity," Work Study, Emerald Group Publishing Limited, vol. 51(6), pages 297-302, November.
    11. Sahoo, Lalit Kumar & Bandyopadhyay, Santanu & Banerjee, Rangan, 2014. "Benchmarking energy consumption for dump trucks in mines," Applied Energy, Elsevier, vol. 113(C), pages 1382-1396.
    12. Henderson, Darrall & Vaughan, Diane E. & Jacobson, Sheldon H. & Wakefield, Ron R. & Sewell, Edward C., 2003. "Solving the shortest route cut and fill problem using simulated annealing," European Journal of Operational Research, Elsevier, vol. 145(1), pages 72-84, February.
    13. Yee, Kian Fei & Tan, Kok Tat & Abdullah, Ahmad Zuhairi & Lee, Keat Teong, 2009. "Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability," Applied Energy, Elsevier, vol. 86(Supplemen), pages 189-196, November.
    14. Seung Ok & Sunil Sinha, 2006. "Construction equipment productivity estimation using artificial neural network model," Construction Management and Economics, Taylor & Francis Journals, vol. 24(10), pages 1029-1044.
    15. Acquaye, Adolf A. & Sherwen, Tomás & Genovese, Andrea & Kuylenstierna, Johan & Lenny Koh, SC & McQueen-Mason, Simon, 2012. "Biofuels and their potential to aid the UK towards achieving emissions reduction policy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5414-5422.
    16. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    17. Renó, Maria Luiza Grillo & Lora, Electo Eduardo Silva & Palacio, José Carlos Escobar & Venturini, Osvaldo José & Buchgeister, Jens & Almazan, Oscar, 2011. "A LCA (life cycle assessment) of the methanol production from sugarcane bagasse," Energy, Elsevier, vol. 36(6), pages 3716-3726.
    18. Min-Seop Seo & Taeyeon Kim & Goopyo Hong & Hyungkeun Kim, 2016. "On-Site Measurements of CO 2 Emissions during the Construction Phase of a Building Complex," Energies, MDPI, vol. 9(8), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helena Nydahl & Staffan Andersson & Anders P. Åstrand & Thomas Olofsson, 2019. "Environmental Performance Measures to Assess Building Refurbishment from a Life Cycle Perspective," Energies, MDPI, vol. 12(2), pages 1-16, January.
    2. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Pomponi, Francesco & Moncaster, Alice, 2018. "Scrutinising embodied carbon in buildings: The next performance gap made manifest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2431-2442.
    4. Jianguo Chen & Yangyue Su & Hongyun Si & Jindao Chen, 2018. "Managerial Areas of Construction and Demolition Waste: A Scientometric Review," IJERPH, MDPI, vol. 15(11), pages 1-20, October.
    5. Suman Paneru & Forough Foroutan Jahromi & Mohsen Hatami & Wilfred Roudebush & Idris Jeelani, 2021. "Integration of Emergy Analysis with Building Information Modeling," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    6. Vahidi, Ehsan & Kirchain, Randolph & Burek, Jasmina & Gregory, Jeremy, 2021. "Regional variation of greenhouse gas mitigation strategies for the United States building sector," Applied Energy, Elsevier, vol. 302(C).
    7. Sastre, C.M. & Maletta, E. & González-Arechavala, Y. & Ciria, P. & Santos, A.M. & del Val, A. & Pérez, P. & Carrasco, J., 2014. "Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments," Applied Energy, Elsevier, vol. 114(C), pages 737-748.
    8. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.
    9. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Pan, Wei & Li, Kaijian & Teng, Yue, 2018. "Rethinking system boundaries of the life cycle carbon emissions of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 379-390.
    11. Jusselme, Thomas & Rey, Emmanuel & Andersen, Marilyne, 2018. "An integrative approach for embodied energy: Towards an LCA-based data-driven design method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 123-132.
    12. Noushin Islam & Malindu Sandanayake & Shobha Muthukumaran & Dimuth Navaratna, 2024. "Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects," Sustainability, MDPI, vol. 16(8), pages 1-30, April.
    13. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    14. S.R. Patterson & E. Kozan & P. Hyland, 2016. "An integrated model of an open-pit coal mine: improving energy efficiency decisions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4213-4227, July.
    15. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    16. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    17. Junwu Wang & Yinghui Song & Wei Wang & Suikuan Wang & Feng Guo & Jiequn Lu, 2022. "Marine Construction Waste Recycling Mechanism Considering Public Participation and Carbon Trading: A Study on Dynamic Modeling and Simulation Based on Sustainability Policy," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    18. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    19. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    20. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:194:y:2024:i:c:s1364032124000133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.