IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v18y2013icp95-102.html
   My bibliography  Save this article

Regional application of ground source heat pump in China: A case of Shenyang

Author

Listed:
  • Geng, Yong
  • Sarkis, Joseph
  • Wang, Xinbei
  • Zhao, Hongyan
  • Zhong, Yongguang

Abstract

Rapid industrialization, increasing population urbanization, and improved living standards have all contributed to greatly increasing greenhouse gas (GHG) emissions in urban areas of developing countries. This situation is especially true for China, where fossil fuel depletion is a critical issue from its contribution to GHG emissions, and in terms of resources being consumed. To address these issues the Chinese government has supported application of ground source heat pumps (GSHP) technology. This focus is meant to alleviate the dependence on fossil fuels and improve the country's energy structure. Several Chinese cities have embraced GSHP technology, and currently achieved some results. Shenyang, in Liaoning province, is one pioneering municipality. The city has become a champion of GSHP projects. However, the international energy research community has not been made aware of this important regional effort. The aim of this paper is to introduce and review the progress of GSHP technology diffusion within this region of China. This practical review will include policies, benefits and challenges facing the region and their adoption of GSHP technology. Recommendations for improvement of regional application on GSHP technologies given regional conditions are also made. These recommendations include strong leadership, appropriate policy incentives, effective enforcement mechanisms, and roundtable-based management. Relevant experience and lessons learned can be shared by other, globally locations, to help in GSHP technology diffusion.

Suggested Citation

  • Geng, Yong & Sarkis, Joseph & Wang, Xinbei & Zhao, Hongyan & Zhong, Yongguang, 2013. "Regional application of ground source heat pump in China: A case of Shenyang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 95-102.
  • Handle: RePEc:eee:rensus:v:18:y:2013:i:c:p:95-102
    DOI: 10.1016/j.rser.2012.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112005576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Tavoni, Massimo & Carraro, Carlo, 2009. "Climate Change Mitigation Strategies in Fast-Growing Countries: The Benefits of Early Action," Sustainable Development Papers 52541, Fondazione Eni Enrico Mattei (FEEM).
    2. Blum, Philipp & Campillo, Gisela & Kölbel, Thomas, 2011. "Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany," Energy, Elsevier, vol. 36(5), pages 3002-3011.
    3. Bi, Yuehong & Guo, Tingwei & Zhang, Liang & Chen, Lingen, 2004. "Solar and ground source heat-pump system," Applied Energy, Elsevier, vol. 78(2), pages 231-245, June.
    4. Wang, Huajun & Qi, Chengying & Wang, Enyu & Zhao, Jun, 2009. "A case study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings," Renewable Energy, Elsevier, vol. 34(1), pages 307-314.
    5. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    6. Kaygusuz, Kamil & Kaygusuz, Abdullah, 2004. "Geothermal energy in Turkey: the sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 545-563, December.
    7. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    8. Xi, Fengming & Geng, Yong & Chen, Xudong & Zhang, Yunsong & Wang, Xinbei & Xue, Bing & Dong, Huijuan & Liu, Zhu & Ren, Wanxia & Fujita, Tsuyoshi & Zhu, Qinghua, 2011. "Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China," Energy Policy, Elsevier, vol. 39(10), pages 5999-6010, October.
    9. Lee, Jin-Yong, 2009. "Current status of ground source heat pumps in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1560-1568, August.
    10. Gao, Qing & Li, Ming & Yu, Ming & Spitler, Jeffrey D. & Yan, Y.Y., 2009. "Review of development from GSHP to UTES in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1383-1394, August.
    11. Shui-Yan Tang & Carlos Wing-Hung Lo & Gerald E Fryxell, 2003. "Enforcement Styles, Organizational Commitment, and Enforcement Effectiveness: An Empirical Study of Local Environmental Protection Officials in Urban China," Environment and Planning A, , vol. 35(1), pages 75-94, January.
    12. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Yang, Wei & Zhou, Jin & Xu, Wei & Zhang, Guoqiang, 2010. "Current status of ground-source heat pumps in China," Energy Policy, Elsevier, vol. 38(1), pages 323-332, January.
    14. Paska, J. & Salek, M. & Surma, T., 2009. "Current status and perspectives of renewable energy sources in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 142-154, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    2. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Liu, Zhijian & Xu, Wei & Zhai, Xue & Qian, Cheng & Chen, Xi, 2017. "Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas," Renewable Energy, Elsevier, vol. 101(C), pages 1131-1140.
    4. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    5. Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
    6. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    7. Ya Wu & Chenyang Shuai & Liu Wu & Liyin Shen & Jianzhong Yan & Liudan Jiao & Shiju Liao, 2020. "A new experience mining approach for improving low carbon city development," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 922-934, July.
    8. Liquan Xu & Yong Geng & Dong Wu & Chenyi Zhang & Shijiang Xiao, 2021. "Carbon Footprint of Residents’ Housing Consumption and Its Driving Forces in China," Energies, MDPI, vol. 14(13), pages 1-16, June.
    9. Yue Liu & Ying Qu & Zhen Lei & Wenhua Wang, 2020. "Multi-sector reduction potential of embodied carbon emissions in China: a case study of Liaoning province," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5585-5602, August.
    10. Zeng, Zheng & Zhao, Rongxiang & Yang, Huan & Tang, Shengqing, 2014. "Policies and demonstrations of micro-grids in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 701-718.
    11. Geng, Yong & Zhao, Hongyan & Liu, Zhu & Xue, Bing & Fujita, Tsuyoshi & Xi, Fengming, 2013. "Exploring driving factors of energy-related CO2 emissions in Chinese provinces: A case of Liaoning," Energy Policy, Elsevier, vol. 60(C), pages 820-826.
    12. Liu, Xiaobing & Lu, Shilei & Hughes, Patrick & Cai, Zhe, 2015. "A comparative study of the status of GSHP applications in the United States and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 558-570.
    13. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    14. Liu, Zhijian & Xu, Wei & Qian, Cheng & Chen, Xi & Jin, Guangya, 2015. "Investigation on the feasibility and performance of ground source heat pump (GSHP) in three cities in cold climate zone, China," Renewable Energy, Elsevier, vol. 84(C), pages 89-96.
    15. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    16. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    17. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    18. Ni, Long & Dong, Jiankai & Yao, Yang & Shen, Chao & Qv, Dehu & Zhang, Xuedan, 2015. "A review of heat pump systems for heating and cooling of buildings in China in the last decade," Renewable Energy, Elsevier, vol. 84(C), pages 30-45.
    19. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    20. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    21. Yu, Xiaoman & Geng, Yong & Dong, Huijuan & Ulgiati, Sergio & Liu, Zhe & Liu, Zuoxi & Ma, Zhixiao & Tian, Xu & Sun, Lu, 2016. "Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology)," Energy, Elsevier, vol. 107(C), pages 818-830.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    2. Zhai, X.Q. & Qu, M. & Yu, X. & Yang, Y. & Wang, R.Z., 2011. "A review for the applications and integrated approaches of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3133-3140, August.
    3. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    4. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    5. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    6. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    7. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    8. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    9. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    10. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    11. Liu, Zhijian & Xu, Wei & Qian, Cheng & Chen, Xi & Jin, Guangya, 2015. "Investigation on the feasibility and performance of ground source heat pump (GSHP) in three cities in cold climate zone, China," Renewable Energy, Elsevier, vol. 84(C), pages 89-96.
    12. Wang, Guiling & Wang, Wanli & Luo, Jin & Zhang, Yuhao, 2019. "Assessment of three types of shallow geothermal resources and ground-source heat-pump applications in provincial capitals in the Yangtze River Basin, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 392-421.
    13. Yang, Wei & Zhou, Jin & Xu, Wei & Zhang, Guoqiang, 2010. "Current status of ground-source heat pumps in China," Energy Policy, Elsevier, vol. 38(1), pages 323-332, January.
    14. Warwick J. McKibbin & Adele C. Morris & Peter J. Wilcoxen, 2014. "The Economic Consequences of Delay in US Climate Policy," CCEP Working Papers 1408, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    15. Caiado, Nathália & Guarnieri, Patricia & Xavier, Lúcia Helena & de Lorena Diniz Chaves, Gisele, 2017. "A characterization of the Brazilian market of reverse logistic credits (RLC) and an analogy with the existing carbon credit market," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 47-59.
    16. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    17. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    18. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    19. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.
    20. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:18:y:2013:i:c:p:95-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.