IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i8p5760-5769.html
   My bibliography  Save this article

The vulnerability of hydroelectric generation in the Northeast of Brazil: The environmental and business risks for CHESF

Author

Listed:
  • Andrade, Eurídice M.
  • Paulo Cosenza, José
  • Pinguelli Rosa, Luiz
  • Lacerda, Gleide

Abstract

The main objective of this study is to identify how global climate change may affect the internal and external variables of enterprises, and how strategic planning could include responses to potential performance threats. A case study was prepared using data from the São Francisco Hydroelectric Company (CHESF), the largest hydroelectric power generator in Brazil's Northeast region. It is essential to understand how the leading energy company in the region is preparing to address these problems involving economic impacts resulting from the environmental effects of climate change. Two prospective methodologies were used to select the variables and construct a SWOT matrix, and their respective scenarios: A Panel of Experts and the Delphi Method. The methodologies used allow for four (4) distinct scenarios to be inferred for CHESF up until 2050: Development, Growth, Survival and Decline. The analyses of these scenarios concluded that CHESF's main risk from climate change is the possible reduction of water flow and reservoir levels, which could threaten energy security throughout the country if certain preventative adaptations to climate change are not implemented.

Suggested Citation

  • Andrade, Eurídice M. & Paulo Cosenza, José & Pinguelli Rosa, Luiz & Lacerda, Gleide, 2012. "The vulnerability of hydroelectric generation in the Northeast of Brazil: The environmental and business risks for CHESF," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5760-5769.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:5760-5769
    DOI: 10.1016/j.rser.2012.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112004212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terrados, J. & Almonacid, G. & Hontoria, L., 2007. "Regional energy planning through SWOT analysis and strategic planning tools.: Impact on renewables development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1275-1287, August.
    2. Jay, Stephen, 2010. "Strategic environmental assessment for energy production," Energy Policy, Elsevier, vol. 38(7), pages 3489-3497, July.
    3. Markovska, N. & Taseska, V. & Pop-Jordanov, J., 2009. "SWOT analyses of the national energy sector for sustainable energy development," Energy, Elsevier, vol. 34(6), pages 752-756.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    2. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    3. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 0. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 0, pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos Kokkinos & Vayos Karayannis, 2020. "Supportiveness of Low-Carbon Energy Technology Policy Using Fuzzy Multicriteria Decision-Making Methodologies," Mathematics, MDPI, vol. 8(7), pages 1-26, July.
    2. Sebastian Goers & Fiona Rumohr & Sebastian Fendt & Louis Gosselin & Gilberto M. Jannuzzi & Rodolfo D. M. Gomes & Stella M. S. Sousa & Reshmi Wolvers, 2020. "The Role of Renewable Energy in Regional Energy Transitions: An Aggregate Qualitative Analysis for the Partner Regions Bavaria, Georgia, Québec, São Paulo, Shandong, Upper Austria, and Western Cape," Sustainability, MDPI, vol. 13(1), pages 1-30, December.
    3. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    4. Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).
    5. Njoh, Ambe J., 2017. "The SWOT model's utility in evaluating energy technology: Illustrative application of a modified version to assess the sawdust cookstove's sustainability in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 313-323.
    6. Darshini, Dina & Dwivedi, Puneet & Glenk, Klaus, 2013. "Capturing stakeholders´ views on oil palm-based biofuel and biomass utilisation in Malaysia," Energy Policy, Elsevier, vol. 62(C), pages 1128-1137.
    7. Kassem, Abdulrahman & Al-Haddad, Kamal & Komljenovic, Dragan, 2017. "Concentrated solar thermal power in Saudi Arabia: Definition and simulation of alternative scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 75-91.
    8. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    9. Gawlik, Bernd Manfred & Sobiecka, Elzbieta & Vaccaro, Stefano & Ciceri, Giovanni, 2007. "Quality management organisation, validation of standards, developments and inquiries for solid-recovered fuels--An overview on the QUOVADIS-Project," Energy Policy, Elsevier, vol. 35(12), pages 6293-6298, December.
    10. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    11. Miguel Chen Austin & Katherine Chung-Camargo & Dafni Mora, 2021. "Review of Zero Energy Building Concept-Definition and Developments in Latin America: A Framework Definition for Application in Panama," Energies, MDPI, vol. 14(18), pages 1-30, September.
    12. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
    13. Mo Chung & Suk Gyu Lee & Chuhwan Park & Hwa-Choon Park & Yong-Hoon Im, 2013. "Development of a Combined Energy-Demands Calculator for Urban Building Communities in Korea," Environment and Planning B, , vol. 40(2), pages 289-310, April.
    14. Terrados, J. & Almonacid, G. & Pérez-Higueras, P., 2009. "Proposal for a combined methodology for renewable energy planning. Application to a Spanish region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2022-2030, October.
    15. Taseska, V. & Markovska, N. & Causevski, A. & Bosevski, T. & Pop-Jordanov, J., 2011. "Greenhouse gases (GHG) emissions reduction in a power system predominantly based on lignite," Energy, Elsevier, vol. 36(4), pages 2266-2270.
    16. Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
    17. Mainali, Bandita & Ngo, Huu Hao & Guo, Wenshan & Pham, Thi Thu Nga & Johnston, Archie, 2011. "Feasibility assessment of recycled water use for washing machines in Australia through SWOT analysis," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 87-91.
    18. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    19. Jens Lüdeke, 2017. "Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-31, March.
    20. Emel Yontar & Onur Derse, 2023. "Evaluation of sustainable energy action plan strategies with a SWOT/TWOS-based AHP/ANP approach: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5691-5715, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:5760-5769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.