IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i6p3045-3050.html
   My bibliography  Save this article

A comprehensive review on solar water heaters

Author

Listed:
  • Jaisankar, S.
  • Ananth, J.
  • Thulasi, S.
  • Jayasuthakar, S.T.
  • Sheeba, K.N.

Abstract

Solar water heating system proves to be an effective technology for converting solar energy into thermal energy. The efficiency of solar thermal conversion is around 70% when compared to solar electrical direct conversion system which has an efficiency of only 17%. Hence solar water heaters play a vital role in domestic as well as industrial sector due to its ease of operation and simple maintenance. Extensive works on improving the thermal efficiency of solar water heaters resulted in techniques to improve the convective heat transfer. Passive technique has been used to augment convective heat transfer. These techniques when adopted in solar water heaters proved that the overall thermal performance improved significantly. This paper reviews various techniques to enhance the thermal efficiency in solar water heater. In addition to this, a detailed discussion on the limitations of existing research, research gap and suggested possible modifications is made.

Suggested Citation

  • Jaisankar, S. & Ananth, J. & Thulasi, S. & Jayasuthakar, S.T. & Sheeba, K.N., 2011. "A comprehensive review on solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3045-3050, August.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:3045-3050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111001092
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hutchins, Michael G., 1979. "Spectrally selective solar absorber coatings," Applied Energy, Elsevier, vol. 5(4), pages 251-262, October.
    2. Karaghouli, A.A & Alnaser, W.E, 2001. "Experimental study on thermosyphon solar water heater in Bahrain," Renewable Energy, Elsevier, vol. 24(3), pages 389-396.
    3. Gao, Wenfeng & Lin, Wenxian & Liu, Tao & Xia, Chaofeng, 2007. "Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters," Applied Energy, Elsevier, vol. 84(4), pages 425-441, April.
    4. Chaurasia, P.B.L, 2000. "Solar water heaters based on concrete collectors," Energy, Elsevier, vol. 25(8), pages 703-716.
    5. Mittal, M.K. & Varun, & Saini, R.P. & Singal, S.K., 2007. "Effective efficiency of solar air heaters having different types of roughness elements on the absorber plate," Energy, Elsevier, vol. 32(5), pages 739-745.
    6. Norton, B. & Probert, S.D., 1983. "Recent advances in natural-circulation, solar-energy water heater designs," Applied Energy, Elsevier, vol. 15(1), pages 15-42.
    7. Ghamari, D.M. & Worth, R.A., 1992. "The effect of tube spacing on the cost-effectiveness of a flat-plate solar collector," Renewable Energy, Elsevier, vol. 2(6), pages 603-606.
    8. Jaisankar, S. & Radhakrishnan, T.K. & Sheeba, K.N., 2009. "Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes," Energy, Elsevier, vol. 34(9), pages 1054-1064.
    9. Hegazy, Adel A, 2001. "Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors," Renewable Energy, Elsevier, vol. 22(4), pages 525-540.
    10. Kumar, A & Prasad, B.N, 2000. "Investigation of twisted tape inserted solar water heaters—heat transfer, friction factor and thermal performance results," Renewable Energy, Elsevier, vol. 19(3), pages 379-398.
    11. Soulayman, S.Sh., 1991. "On the optimum tilt of solar absorber plates," Renewable Energy, Elsevier, vol. 1(3), pages 551-554.
    12. Pluta, Zbyslaw & Pomierny, Wlodzimierz, 1995. "The theoretical and experimental investigation of the phase-change solar thermosyphon," Renewable Energy, Elsevier, vol. 6(3), pages 317-321.
    13. Zerrouki, A. & Boumédien, A. & Bouhadef, K., 2002. "The natural circulation solar water heater model with linear temperature distribution," Renewable Energy, Elsevier, vol. 26(4), pages 549-559.
    14. Naphon, Paisarn & Wongwises, Somchai, 2006. "A review of flow and heat transfer characteristics in curved tubes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 463-490, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaisankar, S. & Radhakrishnan, T.K. & Sheeba, K.N., 2009. "Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes," Energy, Elsevier, vol. 34(9), pages 1054-1064.
    2. Khamis Mansour, M., 2013. "Thermal analysis of novel minichannel-based solar flat-plate collector," Energy, Elsevier, vol. 60(C), pages 333-343.
    3. Balaji, K. & Ganesh Kumar, P. & Sakthivadivel, D. & Vigneswaran, V.S. & Iniyan, S., 2019. "Experimental investigation on flat plate solar collector using frictionally engaged thermal performance enhancer in the absorber tube," Renewable Energy, Elsevier, vol. 142(C), pages 62-72.
    4. Sundar, L. Syam & Singh, Manoj K. & Punnaiah, V. & Sousa, Antonio C.M., 2018. "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts," Renewable Energy, Elsevier, vol. 119(C), pages 820-833.
    5. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    6. Yang, Ming & Yang, Xudong & Li, Xing & Wang, Zhifeng & Wang, Pengsu, 2014. "Design and optimization of a solar air heater with offset strip fin absorber plate," Applied Energy, Elsevier, vol. 113(C), pages 1349-1362.
    7. Mohammadi, K. & Sabzpooshani, M., 2013. "Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate," Energy, Elsevier, vol. 57(C), pages 741-750.
    8. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2009. "Solar timber kilns: State of the art and foreseeable developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1446-1455, August.
    9. Sakhaei, Seyed Ali & Valipour, Mohammad Sadegh, 2019. "Performance enhancement analysis of The flat plate collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 186-204.
    10. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    11. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    12. Ananth, J. & Jaisankar, S., 2014. "Investigation on heat transfer and friction factor characteristics of thermosiphon solar water heating system with left-right twist regularly spaced with rod and spacer," Energy, Elsevier, vol. 65(C), pages 357-363.
    13. Liu, S. & Sakr, M., 2013. "A comprehensive review on passive heat transfer enhancements in pipe exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 64-81.
    14. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    15. Alta, Deniz & Bilgili, Emin & Ertekin, C. & Yaldiz, Osman, 2010. "Experimental investigation of three different solar air heaters: Energy and exergy analyses," Applied Energy, Elsevier, vol. 87(10), pages 2953-2973, October.
    16. Koffi, Paul Magloire E. & Koua, Blaise K. & Gbaha, Prosper & Touré, Siaka, 2014. "Thermal performance of a solar water heater with internal exchanger using thermosiphon system in Côte d'Ivoire," Energy, Elsevier, vol. 64(C), pages 187-199.
    17. Saravanan, A. & Senthilkumaar, J.S. & Jaisankar, S., 2016. "Experimental studies on heat transfer and friction factor characteristics of twist inserted V-trough thermosyphon solar water heating system," Energy, Elsevier, vol. 112(C), pages 642-654.
    18. Khargotra, Rohit & Kumar, Sushil & Kumar, Raj, 2021. "Influence of hindrance promoter on the thermal augmentation factor of solar water heater (an experimental study)," Renewable Energy, Elsevier, vol. 163(C), pages 1356-1369.
    19. Jaramillo, O.A. & Borunda, Mónica & Velazquez-Lucho, K.M. & Robles, M., 2016. "Parabolic trough solar collector for low enthalpy processes: An analysis of the efficiency enhancement by using twisted tape inserts," Renewable Energy, Elsevier, vol. 93(C), pages 125-141.
    20. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:3045-3050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.