IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics1364032121010881.html
   My bibliography  Save this article

Cellulose tailored semiconductors for advanced photocatalysis

Author

Listed:
  • Qiu, Jianhao
  • Li, Ming
  • Ding, Meili
  • Yao, Jianfeng

Abstract

In recent years, organic-inorganic composites have aroused considerable attention due to their tunable properties, where cellulose tailored semiconductors for artificial photocatalysis are typical examples. In virtue of the unique fibrous structure and abundant surface functional groups, cellulose employed in the design of photocatalysts could endow good hydrophilicity, dispersity, stability, high porosity, conductivity, large surface area and even unexpected morphologies. In this review, the modification strategies of cellulose to semiconductors (function as assistants and sacrifice as bio-templates), diverse monoliths (films, gels and textiles) and their photocatalytic applications (contaminants treatment and H2 production) are summarized in detail. In addition, the challenges and outlook of semiconductor/cellulose photocatalysts are also discussed.

Suggested Citation

  • Qiu, Jianhao & Li, Ming & Ding, Meili & Yao, Jianfeng, 2022. "Cellulose tailored semiconductors for advanced photocatalysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010881
    DOI: 10.1016/j.rser.2021.111820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121010881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dingenen, Fons & Verbruggen, Sammy W., 2021. "Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Ummartyotin, Sarute & Manuspiya, Hathaikarn, 2015. "A critical review on cellulose: From fundamental to an approach on sensor technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 402-412.
    3. Ummartyotin, Sarute & Manuspiya, Hathaikarn, 2015. "An overview of feasibilities and challenge of conductive cellulose for rechargeable lithium based battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 204-213.
    4. Yang Si & Jianyong Yu & Xiaomin Tang & Jianlong Ge & Bin Ding, 2014. "Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ummartyotin, S. & Bunnak, N. & Manuspiya, H., 2016. "A comprehensive review on modified clay based composite for energy based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 466-472.
    2. Singh, Rahul & Polu, Anji Reddy & Bhattacharya, B. & Rhee, Hee-Woo & Varlikli, Canan & Singh, Pramod K., 2016. "Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1098-1117.
    3. Ummartyotin, S. & Pechyen, C., 2016. "Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 654-664.
    4. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Naresh Shahi & Byungjin Min & Bedanga Sapkota & Vijaya K. Rangari, 2020. "Eco-Friendly Cellulose Nanofiber Extraction from Sugarcane Bagasse and Film Fabrication," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    6. Lin, Zizhen & Ping, Xiaofan & Zhao, Dongming & Cai, Zihe & Wang, Xingtao & Zhang, Chi & Wang, Lichuang & Li, Menglei & Chen, Xiongfei & Niu, Jingkai & Xue, Yao & Liu, Yun & Li, Xinlian & Qin, Xiaojun , 2024. "A biomimetic non-woven fabric with passive thermal-insulation and active heat-recovering," Applied Energy, Elsevier, vol. 353(PA).
    7. S. M. Shatil Shahriar & Alec D. McCarthy & Syed Muntazir Andrabi & Yajuan Su & Navatha Shree Polavoram & Johnson V. John & Mitchell P. Matis & Wuqiang Zhu & Jingwei Xie, 2024. "Mechanically resilient hybrid aerogels containing fibers of dual-scale sizes and knotty networks for tissue regeneration," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Lei Zhuang & De Lu & Jijun Zhang & Pengfei Guo & Lei Su & Yuanbin Qin & Peng Zhang & Liang Xu & Min Niu & Kang Peng & Hongjie Wang, 2023. "Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Ummartyotin, Sarute & Manuspiya, Hathaikarn, 2015. "An overview of feasibilities and challenge of conductive cellulose for rechargeable lithium based battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 204-213.
    10. Lujia Han & Shile Chen & Honghua Li & Yanhao Dong & Chang-An Wang & Jiangtao Li, 2024. "Rapid and inexpensive synthesis of liter-scale SiC aerogels," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Lozano-Martín, Daniel & Moreau, Alejandro & Chamorro, César R., 2022. "Thermophysical properties of hydrogen mixtures relevant for the development of the hydrogen economy: Review of available experimental data and thermodynamic models," Renewable Energy, Elsevier, vol. 198(C), pages 1398-1429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.