IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121009394.html
   My bibliography  Save this article

Enhanced bioremediation of pulp effluents through improved enzymatic treatment strategies: A greener approach

Author

Listed:
  • Dixit, Mandeep
  • Gupta, Guddu Kumar
  • Usmani, Zeba
  • Sharma, Minaxi
  • Shukla, Pratyoosh

Abstract

The massive load of effluents released from the pulp and paper industry has an adverse environmental impact due to the discharge of hazardous materials. These effluents contain mostly recalcitrant compounds like lignin, which are rigid and resilient to degradation. Bioremediation technologies such as biostimulation using nutrients and biological techniques are being used for the biodegradation of hazardous effluents. But they are not up to that level of remediation efficiency. Many enzymes have been used for bioremediation in recent years, which are easy to use, eco-friendly, and adequate to ensure the public safety. Such enzymes, along with their mechanisms, have been well studied for the bioremediation of effluents. This review describes enzyme technologies, including laccase mediated treatment, lignin peroxidase, and manganese peroxidase treatment to reduce effluent load into the environment. The other methods including aerobic and anaerobic treatments utilizing bio-sludge for producing beneficial products such as biofuels, and bio-sorbents for oil peeling are also described in the present review. This review also gives a summarized but unique description of the aspects of the immobilized biocatalysts and biosorbents used to mitigate the production of toxic pollutants from the pulp and paper industry. The strategies based on the advanced enzyme engineering technologies for bioremediation of such contaminants are also briefly described. This review also discusses the techno-economic assessment of enzymatic remediation and future challenges for the bioremediation of these effluents. In conclusion, enzyme-based advanced technologies are crucial ‘green technologies’ for providing a sustainable solution for bioremediation and reduced environmental pollution.

Suggested Citation

  • Dixit, Mandeep & Gupta, Guddu Kumar & Usmani, Zeba & Sharma, Minaxi & Shukla, Pratyoosh, 2021. "Enhanced bioremediation of pulp effluents through improved enzymatic treatment strategies: A greener approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009394
    DOI: 10.1016/j.rser.2021.111664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabhane, Jagdish & Kumar, Sachin & Sarma, A.K., 2020. "Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw," Renewable Energy, Elsevier, vol. 154(C), pages 1304-1313.
    2. Lin, Yunqin & Liang, Jiajin & Zeng, Chao & Wang, Dehan & Lin, Huanjia, 2017. "Anaerobic digestion of pulp and paper mill sludge pretreated by microbial consortium OEM1 with simultaneous degradation of lignocellulose and chlorophenols," Renewable Energy, Elsevier, vol. 108(C), pages 108-115.
    3. Bousios, Spyridon & Worrell, Ernst, 2017. "Towards a Multiple Input-Multiple Output paper mill: Opportunities for alternative raw materials and sidestream valorisation in the paper and board industry," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 218-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barua, Visva Bharati & Goud, Vaibhav V. & Kalamdhad, Ajay S., 2018. "Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production," Renewable Energy, Elsevier, vol. 126(C), pages 21-29.
    2. Du, Ran & Li, Chong & Lin, Weichao & Lin, Carol Sze Ki & Yan, Jianbin, 2022. "Domesticating a bacterial consortium for efficient lignocellulosic biomass conversion," Renewable Energy, Elsevier, vol. 189(C), pages 359-368.
    3. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    4. Barua, Visva Bharati & Rathore, Vidhi & Kalamdhad, Ajay S., 2019. "Anaerobic co-digestion of water hyacinth and banana peels with and without thermal pretreatment," Renewable Energy, Elsevier, vol. 134(C), pages 103-112.
    5. Zhao, Man & Wang, Yanan & Zhou, Wenting & Zhou, Wei & Gong, Zhiwei, 2023. "Co-valorization of crude glycerol and low-cost substrates via oleaginous yeasts to micro-biodiesel: Status and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Rosen, Yan & Mamane, Hadas & Gerchman, Yoram, 2021. "Immersed ozonation of agro-wastes as an effective pretreatment method in bioethanol production," Renewable Energy, Elsevier, vol. 174(C), pages 382-390.
    7. Ajayi-Banji, A. & Rahman, S., 2022. "A review of process parameters influence in solid-state anaerobic digestion: Focus on performance stability thresholds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Sethupathy, A. & Sivashanmugam, P., 2021. "Amelioration of methane production efficiency of paper industry waste sludge through hydrolytic enzymes assisted with poly3hydroxybutyrate," Energy, Elsevier, vol. 214(C).
    9. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    10. Chen, Zhengyu & Wang, Huan & Wei, Weiqi & Yuan, Zhaoyang, 2021. "Enhancing bagasse enzymatic hydrolysis through combination of ball-milling and LiCl/DMSO dissolution and regeneration," Renewable Energy, Elsevier, vol. 171(C), pages 994-1001.
    11. Zhang, Qilin & Guo, Zongwei & Zeng, Xianhai & Ramarao, Bandaru & Xu, Feng, 2021. "A sustainable biorefinery strategy: Conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations," Renewable Energy, Elsevier, vol. 179(C), pages 351-358.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.