IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i7p2019-2028.html
   My bibliography  Save this article

Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study

Author

Listed:
  • Luickx, Patrick J.
  • Delarue, Erik D.
  • D'haeseleer, William D.

Abstract

Wind power can have considerable impacts on the operation of electricity generation systems. Energy from wind power replaces other forms of electricity generation, thereby lowering overall fuel costs and greenhouse gas (GHG) emissions. However, the intermittency of wind power, reflected in its variability and relative unpredictability restrains the full potential benefits of wind power. The variable nature of wind power requires power plants to be ready for bridging moments of low wind power output. The occurrence of forecast errors for wind speed necessitates sufficient reserve capacity in the system, which cannot be used for other useful purposes. These forecast errors inevitably cause efficiency losses in the operation of the system. To analyse the extent of these impacts, the Belgian electricity generation system is taken as a case and investigated on different aspects such as technical limitations for wind power integration and cost and GHG emissions' reduction potential of wind power under different circumstances.

Suggested Citation

  • Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2010. "Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2019-2028, September.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:7:p:2019-2028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00073-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    2. Georgilakis, Pavlos S., 2008. "Technical challenges associated with the integration of wind power into power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 852-863, April.
    3. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    4. Lennart Soder & Hannele Holttinen, 2008. "On methodology for modelling wind power impact on power systems," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 29(1/2), pages 181-198.
    5. Liu, Li-qun & Wang, Zhi-xin, 2009. "The development and application practice of wind-solar energy hybrid generation systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1504-1512, August.
    6. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    7. Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2008. "Considerations on the backup of wind power: Operational backup," Applied Energy, Elsevier, vol. 85(9), pages 787-799, September.
    8. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weber, C. & Shah, N., 2011. "Optimisation based design of a district energy system for an eco-town in the United Kingdom," Energy, Elsevier, vol. 36(2), pages 1292-1308.
    2. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    3. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    4. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    5. Madariaga, A. & de Alegría, I. Martínez & Martín, J.L. & Eguía, P. & Ceballos, S., 2012. "Current facts about offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3105-3116.
    6. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    7. Xiuyun Wang & Yibing Zhou & Junyu Tian & Jian Wang & Yang Cui, 2018. "Wind Power Consumption Research Based on Green Economic Indicators," Energies, MDPI, vol. 11(10), pages 1-24, October.
    8. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    9. Gerardo J. Osório & Miadreza Shafie-khah & Juan M. Lujano-Rojas & João P. S. Catalão, 2018. "Scheduling Model for Renewable Energy Sources Integration in an Insular Power System," Energies, MDPI, vol. 11(1), pages 1-16, January.
    10. Marques, António Cardoso & Fuinhas, José Alberto, 2012. "Is renewable energy effective in promoting growth?," Energy Policy, Elsevier, vol. 46(C), pages 434-442.
    11. Hongyu Long & Ruilin Xu & Jianjun He, 2011. "Incorporating the Variability of Wind Power with Electric Heat Pumps," Energies, MDPI, vol. 4(10), pages 1-15, October.
    12. Turconi, Roberto & Tonini, Davide & Nielsen, Christian F.B. & Simonsen, Christian G. & Astrup, Thomas, 2014. "Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study," Applied Energy, Elsevier, vol. 132(C), pages 66-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weigt, Hannes, 2009. "Germany's wind energy: The potential for fossil capacity replacement and cost saving," Applied Energy, Elsevier, vol. 86(10), pages 1857-1863, October.
    2. Hughes, Larry, 2010. "Meeting residential space heating demand with wind-generated electricity," Renewable Energy, Elsevier, vol. 35(8), pages 1765-1772.
    3. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    4. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    5. Le, Ngoc Anh & Bhattacharyya, Subhes C., 2011. "Integration of wind power into the British system in 2020," Energy, Elsevier, vol. 36(10), pages 5975-5983.
    6. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    7. Mahto, Tarkeshwar & Mukherjee, V., 2015. "Energy storage systems for mitigating the variability of isolated hybrid power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1564-1577.
    8. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    9. Mauro Lafratta & Matthew Leach & Rex B. Thorpe & Mark Willcocks & Eve Germain & Sabeha K. Ouki & Achame Shana & Jacquetta Lee, 2021. "Economic and Carbon Costs of Electricity Balancing Services: The Need for Secure Flexible Low-Carbon Generation," Energies, MDPI, vol. 14(16), pages 1-21, August.
    10. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    11. Scheubel, Christopher & Zipperle, Thomas & Tzscheutschler, Peter, 2017. "Modeling of industrial-scale hybrid renewable energy systems (HRES) – The profitability of decentralized supply for industry," Renewable Energy, Elsevier, vol. 108(C), pages 52-63.
    12. Flora, Rui & Marques, António Cardoso & Fuinhas, José Alberto, 2014. "Wind power idle capacity in a panel of European countries," Energy, Elsevier, vol. 66(C), pages 823-830.
    13. Djørup, Søren & Thellufsen, Jakob Zinck & Sorknæs, Peter, 2018. "The electricity market in a renewable energy system," Energy, Elsevier, vol. 162(C), pages 148-157.
    14. Tascikaraoglu, A. & Uzunoglu, M. & Vural, B. & Erdinc, O., 2011. "Power quality assessment of wind turbines and comparison with conventional legal regulations: A case study in Turkey," Applied Energy, Elsevier, vol. 88(5), pages 1864-1872, May.
    15. Ramli, Makbul A.M. & Hiendro, Ayong & Sedraoui, Khaled & Twaha, Ssennoga, 2015. "Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 489-495.
    16. Brunet, Carole & Savadogo, Oumarou & Baptiste, Pierre & Bouchard, Michel A., 2018. "Shedding some light on photovoltaic solar energy in Africa – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 325-342.
    17. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    18. Kiviluoma, Juha & Meibom, Peter, 2010. "Influence of wind power, plug-in electric vehicles, and heat storages on power system investments," Energy, Elsevier, vol. 35(3), pages 1244-1255.
    19. Zhong, Jin & He, Lina & Li, Canbing & Cao, Yijia & Wang, Jianhui & Fang, Baling & Zeng, Long & Xiao, Guoxuan, 2014. "Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation," Applied Energy, Elsevier, vol. 123(C), pages 253-262.
    20. Cuesta, M.A. & Castillo-Calzadilla, T. & Borges, C.E., 2020. "A critical analysis on hybrid renewable energy modeling tools: An emerging opportunity to include social indicators to optimise systems in small communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:7:p:2019-2028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.