IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v139y2021ics1364032120308662.html
   My bibliography  Save this article

An Eulerian-Lagrangian method for wet biomass carbonization in rotary kiln reactors

Author

Listed:
  • Tavakkol, Salar
  • Zirwes, Thorsten
  • Denev, Jordan A.
  • Jamshidi, Farshid
  • Weber, Niklas
  • Bockhorn, Henning
  • Trimis, Dimosthenis

Abstract

This study presents numerical simulations of rotary kiln reactors for wet biomass carbonization. For this, a numerical tool has been developed resolving the carbonization process in time and space. Biomass particles are represented by Lagrangian particles that collide and form a moving bed. The gas phase is treated as an Eulerian phase. Both phases are fully coupled with the exchange of momentum, energy, and mass of chemical species. The tool is implemented in the open-source OpenFOAM® framework and additional submodels for devolatilization, drying and radiation have been developed for the conditions relevant during the carbonization process. In this way, models for the complex physical processes are combined in a single simulation tool.

Suggested Citation

  • Tavakkol, Salar & Zirwes, Thorsten & Denev, Jordan A. & Jamshidi, Farshid & Weber, Niklas & Bockhorn, Henning & Trimis, Dimosthenis, 2021. "An Eulerian-Lagrangian method for wet biomass carbonization in rotary kiln reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120308662
    DOI: 10.1016/j.rser.2020.110582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120308662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansen, Joakim M. & Jensen, Peter A. & Glarborg, Peter & Mancini, Marco & Weber, Roman & Mitchell, Reginald E., 2016. "Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass," Energy, Elsevier, vol. 95(C), pages 279-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Khodaei, H. & Álvarez-Bermúdez, C. & Chapela, S. & Olson, C. & MacKenzie, M.D. & Gómez, M.A. & Porteiro, J., 2024. "Eulerian CFD simulation of biomass thermal conversion in an indirect slow pyrolysis rotary kiln unit to produce biochar from recycled waste wood," Energy, Elsevier, vol. 288(C).
    3. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "Numerical analysis of wood air gasification in a bubbling fluidized gasifier with reactive charcoal as bed material," Renewable Energy, Elsevier, vol. 188(C), pages 282-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Espekvist & Tian Li & Peter Glarborg & Terese Løvås & Peter Arendt Jensen, 2021. "Determination of Zero Dimensional, Apparent Devolatilization Kinetics for Biomass Particles at Suspension Firing Conditions," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Trubetskaya, Anna & Surup, Gerrit & Shapiro, Alexander & Bates, Richard B., 2017. "Modeling the influence of potassium content and heating rate on biomass pyrolysis," Applied Energy, Elsevier, vol. 194(C), pages 199-211.
    3. Siddiqi, Hammad & Kumari, Usha & Biswas, Subrata & Mishra, Asmita & Meikap, B.C., 2020. "A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste," Energy, Elsevier, vol. 204(C).
    4. Niemelä, Niko P. & Tolvanen, Henrik & Saarinen, Teemu & Leppänen, Aino & Joronen, Tero, 2017. "CFD based reactivity parameter determination for biomass particles of multiple size ranges in high heating rate devolatilization," Energy, Elsevier, vol. 128(C), pages 676-687.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120308662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.