IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v133y2020ics1364032120306274.html
   My bibliography  Save this article

Photovoltaic module regional clustering in mainland China and application based on factors influencing field reliability

Author

Listed:
  • Liu, Weidong
  • Jiang, Xiaohua
  • Li, Shaoshuai
  • Luo, Ji
  • Wen, Gen

Abstract

The field reliability of photovoltaic modules is important to make investment, design, operation and maintenance decisions in PV power generation projects. By minimizing the field reliability differences between the congeneric regions of PV modules, a regional clustering method based on the factors influencing field reliability is proposed, and a model to predict the field reliability or service lifetime by the clustering results is presented. Based on systematic analysis of the regional differences between workload and natural wear factors impacting field reliability, a comprehensive clustering model is constructed, and nine clustering indexes are accurately quantified. The Ward and entropy weight methods are adopted to objectively calculate index and time weights, respectively. The weighted Ward clustering algorithm is applied to cluster regions based on workload and natural wear factors. Two clustering results are integrated through comprehensive clustering to obtain the final result. Finally, this method is applied to the clustering of 31 provincial administrative regions in mainland China, and the result is applied to predict the average annual power degradation amount of the PV modules in the different regions, both of which validate the applicability and effectiveness of the proposed method.

Suggested Citation

  • Liu, Weidong & Jiang, Xiaohua & Li, Shaoshuai & Luo, Ji & Wen, Gen, 2020. "Photovoltaic module regional clustering in mainland China and application based on factors influencing field reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120306274
    DOI: 10.1016/j.rser.2020.110339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    2. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    3. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    4. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    5. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2017. "Life cycle impact assessment of photovoltaic power generation from crystalline silicon-based solar modules in Nigeria," Renewable Energy, Elsevier, vol. 101(C), pages 537-549.
    6. Dida, Mustapha & Boughali, Slimane & Bechki, Djamel & Bouguettaia, Hamza, 2020. "Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    7. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    8. Zaihidee, Fardila Mohd & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2016. "Dust as an unalterable deteriorative factor affecting PV panel's efficiency: Why and how," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1267-1278.
    9. Ustun, Taha Selim & Nakamura, Yasuhiro & Hashimoto, Jun & Otani, Kenji, 2019. "Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan," Renewable Energy, Elsevier, vol. 136(C), pages 159-178.
    10. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Weidong & Xu, Ben & Liu, Yan & Li, Shaoshuai & Yan, Weian, 2024. "A field-function methodology predicting the service lifetime of photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Vaverková, Magdalena Daria & Winkler, Jan & Uldrijan, Dan & Ogrodnik, Paweł & Vespalcová, Tereza & Aleksiejuk-Gawron, Joanna & Adamcová, Dana & Koda, Eugeniusz, 2022. "Fire hazard associated with different types of photovoltaic power plants: Effect of vegetation management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    2. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    4. Gabriel López & Diego Ramírez & Joaquín Alonso-Montesinos & Juan Sarmiento & Jesús Polo & Nuria Martín-Chivelet & Aitor Marzo & Francisco Javier Batlles & Pablo Ferrada, 2021. "Design of a Low-Cost Multiplexer for the Study of the Impact of Soiling on PV Panel Performance," Energies, MDPI, vol. 14(14), pages 1-12, July.
    5. Hamid Iftikhar & Eduardo Sarquis & P. J. Costa Branco, 2021. "Why Can Simple Operation and Maintenance (O&M) Practices in Large-Scale Grid-Connected PV Power Plants Play a Key Role in Improving Its Energy Output?," Energies, MDPI, vol. 14(13), pages 1-29, June.
    6. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    8. Hu, Weiwei & Li, Xingcai & Wang, Juan & Tian, Zihang & Zhou, Bin & Wu, Jinpeng & Li, Runmin & Li, Wencang & Ma, Ning & Kang, Jixuan & Wang, Yong & Tian, Jialong & Dai, Jibin, 2022. "Experimental research on the convective heat transfer coefficient of photovoltaic panel," Renewable Energy, Elsevier, vol. 185(C), pages 820-826.
    9. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Zhou, Xiyin, 2022. "Effect of the temperature difference between land and lake on photovoltaic power generation," Renewable Energy, Elsevier, vol. 185(C), pages 86-95.
    10. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    11. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    12. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    13. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    14. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    15. Nain, Preeti & Kumar, Arun, 2020. "Understanding the possibility of material release from end-of-life solar modules: A study based on literature review and survey analysis," Renewable Energy, Elsevier, vol. 160(C), pages 903-918.
    16. Mostafa. F. Shaaban & Amal Alarif & Mohamed Mokhtar & Usman Tariq & Ahmed H. Osman & A. R. Al-Ali, 2020. "A New Data-Based Dust Estimation Unit for PV Panels," Energies, MDPI, vol. 13(14), pages 1-17, July.
    17. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    18. Chanchangi, Yusuf N. & Ghosh, Aritra & Micheli, Leonardo & Fernández, Eduardo F. & Sundaram, Senthilarasu & Mallick, Tapas K., 2022. "Soiling mapping through optical losses for Nigeria," Renewable Energy, Elsevier, vol. 197(C), pages 995-1008.
    19. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Figgis, Benjamin & Ennaoui, Ahmed & Ahzi, Said & Rémond, Yves, 2017. "Review of PV soiling particle mechanics in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 872-881.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120306274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.