IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v132y2020ics1364032120303403.html
   My bibliography  Save this article

A practical review of alternatives to the steady pressurisation method for determining building airtightness

Author

Listed:
  • Zheng, Xiaofeng
  • Cooper, Edward
  • Gillott, Mark
  • Wood, Christopher

Abstract

As an important indicator of construction quality and envelope integrity of buildings, airtightness is responsible for a considerable amount of energy losses associated with infiltration. It is crucial to understand building airtightness during construction and retrofitting to achieve a suitable envelope airtightness which is essential for obtaining a desirable building energy efficiency, durability and indoor environment. As a convenient means of measurement, the current steady pressurisation method has long been accepted as a standard testing method for measuring building airtightness. It offers an intuitive and robust approach for measuring building airtightness and performing building diagnostics. However, it also has some shortcomings that are mainly related to its high pressure measurement, requirement for skilful operation, long test duration and change to the building envelope. Efforts have been made by manufacturers and researchers to further improve its accuracy and practicality with much progress achieved. Work has also been done to develop alternative methods that can overcome some of the issues. This paper provides a practical review on the incumbent methodology and efforts that have been made over the past decades in research and development of other methods to achieve a similar purpose. It compares them in relation to aspects that are considered important in achieving an accurate, quick and practical measurement of building airtightness and the finding shows other methods such as acoustic and unsteady technique have their own advantages over the steady pressurisation method but also add some of their own restrictions, which therefore makes them suited for different applications.

Suggested Citation

  • Zheng, Xiaofeng & Cooper, Edward & Gillott, Mark & Wood, Christopher, 2020. "A practical review of alternatives to the steady pressurisation method for determining building airtightness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303403
    DOI: 10.1016/j.rser.2020.110049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120303403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sonoda, Takashi & Peterson, Folke, 1986. "A sonic method for building air-leakage measurements," Applied Energy, Elsevier, vol. 22(3), pages 205-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chanhyung Shim & Goopyo Hong, 2023. "Airtightness Assessment under Several Low-Pressure Differences in Non-Residential Buildings," Energies, MDPI, vol. 16(19), pages 1-13, September.
    2. Francesco Zaccaro & John Richard Littlewood & Carolyn Hayles, 2021. "An Analysis of Repeating Thermal Bridges from Timber Frame Fraction in Closed Panel Timber Frame Walls: A Case Study from Wales, UK," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303403. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.