IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v113y2019ic46.html
   My bibliography  Save this article

Promoted ZSM-5 catalysts for the production of bio-aromatics, a review

Author

Listed:
  • Lok, C.M.
  • Van Doorn, J.
  • Aranda Almansa, G.

Abstract

This review covers the research and industrial activities on mainly Ga- and Zn-promoted ZSM-5 catalysts for the production of bio-aromatics in the thermochemical conversion of biomass and waste. The promoted ZSM-5 catalysts currently favoured in biomass aromatization have not initially been designed for biomass processing, but for the conversion of petrochemical feeds. In biomass pyrolysis, however, aromatization catalysts have to perform additional tasks to aromatization, such as cracking, reforming, decarboxylation, decarbonylation and the water-gas shift reaction. In addition, catalysts in biomass processing may have to operate with feeds containing acids, sulphur, nitrogen and minerals. Nevertheless, there is great similarity between the optimum catalysts for both petrochemical and biomass aromatization. The preferred aromatization catalysts for both gasification and pyrolysis are Ga- and Zn-promoted ZSM-5 catalysts that synergistically combine a dehydrogenation and an acidic function. Reduced extra-framework Ga cations residing at ZSM-5 exchange positions in close proximity to Brønsted acid sites are the likely active sites for aromatization. For Ga a reduction/oxidation activation procedure to form these sites is beneficial. For Zn/ZSM-5 catalysts ZnOH+ species appear to be the active sites. For these catalysts no reduction/oxidation activation is required. The key process parameters for aromatization are a temperature of 400–550 °C and a low space velocity of 0.5–1.0 h−1. In agreement with the bifunctional nature of Ga/ZSM-5 there exists an optimal Ga loading for each SAR. Best results were obtained with a molar ratio Ga/H+ or Zn/H+ close to 1.0. These catalysts also show the best stability.

Suggested Citation

  • Lok, C.M. & Van Doorn, J. & Aranda Almansa, G., 2019. "Promoted ZSM-5 catalysts for the production of bio-aromatics, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:113:y:2019:i:c:46
    DOI: 10.1016/j.rser.2019.109248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119304484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    2. Jacek Grams & Agnieszka M. Ruppert, 2017. "Development of Heterogeneous Catalysts for Thermo-Chemical Conversion of Lignocellulosic Biomass," Energies, MDPI, vol. 10(4), pages 1-25, April.
    3. Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chao & Zhang, Lei & Li, Yuannian & Li, Baihong & Fan, Mengjiao & Zhang, Lijun & Zhang, Shu & Li, Bin & Wang, Shuang & Hu, Xun, 2023. "Pyrolysis of sawdust impregnated with xylose: Tailoring property of biochar with sugar-derived intermediates," Renewable Energy, Elsevier, vol. 214(C), pages 55-64.
    2. Jogi, Ramakrishna & Samikannu, Ajaikumar & Mäki-Arvela, Päivi & Virtanen, Pasi & Hemming, Jarl & Smeds, Annika & Mukesh, Chandrakant & Lestander, Torbjörn A. & Xu, Chunlin & Mikkola, Jyri-Pekka, 2024. "Liquefaction of lignocellulosic biomass into phenolic monomers and dimers over multifunctional Pd/NbOPO4 catalyst," Renewable Energy, Elsevier, vol. 233(C).
    3. Xiao, Yuan & Liao, Shengqi & Xu, Shuguang & Li, Jianmei & Lu, Zhiyun & Hu, Changwei, 2022. "Selective transformation of typical sugars to lactic acid catalyzed by dealuminated ZSM-5 supported erbium," Renewable Energy, Elsevier, vol. 187(C), pages 551-560.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    3. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    4. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    5. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    7. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    8. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    9. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1-27, June.
    10. Victor Soto & Claudia Ulloa & Ximena Garcia, 2021. "A CFD Design Approach for Industrial Size Tubular Reactors for SNG Production from Biogas (CO 2 Methanation)," Energies, MDPI, vol. 14(19), pages 1-25, September.
    11. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    12. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    13. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    14. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    15. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    16. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    17. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    18. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    19. Ogden, Joan & Jaffe, Amy Myers & Scheitrum, Daniel & McDonald, Zane & Miller, Marshall, 2018. "Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature," Energy Policy, Elsevier, vol. 115(C), pages 317-329.
    20. Strobel, Gion & Hagemann, Birger & Huppertz, Thiago Martins & Ganzer, Leonhard, 2020. "Underground bio-methanation: Concept and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:113:y:2019:i:c:46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.