IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v107y2019icp123-132.html
   My bibliography  Save this article

A simple big data methodology and analysis of the specific yield of all PV power plants in a power system over a long time period

Author

Listed:
  • Guerrero-Lemus, R.
  • Cañadillas-Ramallo, D.
  • Reindl, T.
  • Valle-Feijóo, J.M.

Abstract

In this work, we have reviewed recent literature concerning the performance of PV plants in different power systems and detected that, usually, the raw data used is not complete in terms of the number of PV plants and also main parameters of poor quality need to be removed. Then, for the first time, a study of the specific yield of all PV plants in a power system with single-PV-plant resolution is presented. Thus, we have analyzed the official 237,588 monthly energy values obtained from 2005 to 2017 for the 1523 PV plants in the Canary Islands. This dataset is obtained from PV plants ranging from 0.53 kWp up to 9 MWp, and it has been supplied by the distribution system operator and main utility (ENDESA). Then, this dataset is compared to 153,120 irradiance and temperature data from a PVGIS database. Results show that the Spanish regulation has a direct effect not only on the development of the PV capacity in the Canary Islands, but also on the specific yields. Moreover, only combining meteorological data (irradiance, temperature and wind speed) from satellites, starting year of operation, and nameplate capacity we have developed a very simple theoretical model to predict the specific yield of a PV plant at any location in the Canary Islands, avoiding the requirement of any data from the owners of the PV plants. The simulation values obtained have been validated with the real specific yields for PV plants assumed to be well managed (multi-MW power plants placed in best locations) showing errors below a 3%. This theoretical model has also been used for detecting suboptimal PV plant designs and anomalous specific yield of PV plants above the clear sky limit. Recommendations to avoid anomalous specific yields in future are included.

Suggested Citation

  • Guerrero-Lemus, R. & Cañadillas-Ramallo, D. & Reindl, T. & Valle-Feijóo, J.M., 2019. "A simple big data methodology and analysis of the specific yield of all PV power plants in a power system over a long time period," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 123-132.
  • Handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:123-132
    DOI: 10.1016/j.rser.2019.02.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211930125X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.02.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yumin, 2018. "Incentive pass-through in the California Solar Initiative – An analysis based on third-party contracts," Energy Policy, Elsevier, vol. 121(C), pages 534-541.
    2. Nobre, André M. & Severiano, Carlos A. & Karthik, Shravan & Kubis, Marek & Zhao, Lu & Martins, Fernando R. & Pereira, Enio B. & Rüther, Ricardo & Reindl, Thomas, 2016. "PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore," Renewable Energy, Elsevier, vol. 94(C), pages 496-509.
    3. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    4. Haghdadi, Navid & Copper, Jessie & Bruce, Anna & MacGill, Iain, 2017. "A method to estimate the location and orientation of distributed photovoltaic systems from their generation output data," Renewable Energy, Elsevier, vol. 108(C), pages 390-400.
    5. Guerrero-Lemus, R. & Vega, R. & Kim, Taehyeon & Kimm, Amy & Shephard, L.E., 2016. "Bifacial solar photovoltaics – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1533-1549.
    6. Guerrero-Lemus, Ricardo & González-Díaz, Benjamín & Ríos, Gerardo & Dib, Ramzi N., 2015. "Study of the new Spanish legislation applied to an insular system that has achieved grid parity on PV and wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 426-436.
    7. Leloux, Jonathan & Narvarte, Luis & Trebosc, David, 2012. "Review of the performance of residential PV systems in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1369-1376.
    8. Bertrand, Cédric & Housmans, Caroline & Leloux, Jonathan & Journée, Michel, 2018. "Solar irradiation from the energy production of residential PV systems," Renewable Energy, Elsevier, vol. 125(C), pages 306-318.
    9. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyas Rakhshani & Kumars Rouzbehi & Adolfo J. Sánchez & Ana Cabrera Tobar & Edris Pouresmaeil, 2019. "Integration of Large Scale PV-Based Generation into Power Systems: A Survey," Energies, MDPI, vol. 12(8), pages 1-19, April.
    2. Xie, Haonan & Jiang, Meihui & Zhang, Dongdong & Goh, Hui Hwang & Ahmad, Tanveer & Liu, Hui & Liu, Tianhao & Wang, Shuyao & Wu, Thomas, 2023. "IntelliSense technology in the new power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    3. Yang, Ying & Campana, Pietro Elia & Yan, Jinyue, 2020. "Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    5. Bertrand, Cédric & Housmans, Caroline & Leloux, Jonathan & Journée, Michel, 2018. "Solar irradiation from the energy production of residential PV systems," Renewable Energy, Elsevier, vol. 125(C), pages 306-318.
    6. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    7. Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Patel, M. Tahir & Vijayan, Ramachandran A. & Asadpour, Reza & Varadharajaperumal, M. & Khan, M. Ryyan & Alam, Muhammad A., 2020. "Temperature-dependent energy gain of bifacial PV farms: A global perspective," Applied Energy, Elsevier, vol. 276(C).
    9. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    10. Meng, B. & Loonen, R.C.G.M. & Hensen, J.L.M., 2022. "Performance variability and implications for yield prediction of rooftop PV systems – Analysis of 246 identical systems," Applied Energy, Elsevier, vol. 322(C).
    11. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    12. Ahmad Hasan & Sarah Josephine McCormack & Ming Jun Huang & Brian Norton, 2014. "Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics," Energies, MDPI, vol. 7(3), pages 1-14, March.
    13. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    14. Hanifi, Hamed & Pander, Matthias & Zeller, Ulli & Ilse, Klemens & Dassler, David & Mirza, Mark & Bahattab, Mohammed A. & Jaeckel, Bengt & Hagendorf, Christian & Ebert, Matthias & Gottschalg, Ralph & S, 2020. "Loss analysis and optimization of PV module components and design to achieve higher energy yield and longer service life in desert regions," Applied Energy, Elsevier, vol. 280(C).
    15. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    16. Assoa, Y.B. & Levrard, D., 2020. "A lightweight triangular building integrated photovoltaic module," Applied Energy, Elsevier, vol. 279(C).
    17. Costa, Suellen C.S. & Diniz, Antonia Sonia A.C. & Kazmerski, Lawrence L., 2018. "Solar energy dust and soiling R&D progress: Literature review update for 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2504-2536.
    18. Movilla, Santiago & Miguel, Luis J. & Blázquez, L. Felipe, 2013. "A system dynamics approach for the photovoltaic energy market in Spain¤," Energy Policy, Elsevier, vol. 60(C), pages 142-154.
    19. Fuster-Palop, Enrique & Prades-Gil, Carlos & Masip, X. & Viana-Fons, Joan D. & Payá, Jorge, 2021. "Innovative regression-based methodology to assess the techno-economic performance of photovoltaic installations in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:123-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.