IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v90y2016icp554-564.html
   My bibliography  Save this article

Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium

Author

Listed:
  • Muthu, R. Naresh
  • Rajashabala, S.
  • Kannan, R.

Abstract

In the emerging front of research, much attention is focused on the usage of hydrogen as a promising alternative energy carrier that can potentially replace fossil fuels. Conversely, the realization of hydrogen as an energy carrier becomes impounded since the light weight and compact hydrogen storage materials are still prerequisites for hydrogen fuel cell technology. In the present study, the performance of nanoclay composites composed of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride nanoparticles (h-BN) are investigated towards hydrogen storage. where facile ultrasonic approach was adopted. The prepared A-HNT–h-BN nanoclay composites subjected to various characterization techniques such as X-ray Diffraction (XRD), micro–Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV–Visible Diffuse Reflectance Spectroscopy (DRS), Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Spectroscopy (EDX) and High Resolution Transmission Electron Microscopy (HRTEM) with Selected Area Transmission Electron Diffraction (SAED). The presence of h-BN nanoparticles at the surface of A-HNTs can be seen from HRTEM images and these findings are supported by XRD, FTIR and Raman results. Hydrogen adsorption studies are performed using Sieverts-like hydrogenation setup. A 2.88 wt% of hydrogen storage capacity and 100% desorption were achieved for the A-HNT–5wt% h-BN nanoclay composite at 50 °C. The adsorbed hydrogen possess the average binding energy of 0.33 eV, which lies in the recommended range (0.2–0.4 eV) for fuel cell applications. So it is expected that A-HNT–h-BN nanoclay composites will serve as a better hydrogen storage material for fuel cell applications in the near future.

Suggested Citation

  • Muthu, R. Naresh & Rajashabala, S. & Kannan, R., 2016. "Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium," Renewable Energy, Elsevier, vol. 90(C), pages 554-564.
  • Handle: RePEc:eee:renene:v:90:y:2016:i:c:p:554-564
    DOI: 10.1016/j.renene.2016.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630026X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naresh Muthu, R. & Rajashabala, S. & Kannan, R., 2016. "Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage," Renewable Energy, Elsevier, vol. 85(C), pages 387-394.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yanghuan & Zhang, Wei & Bu, Wengang & Cai, Ying & Qi, Yan & Guo, Shihai, 2019. "Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce-Mg-Ni-based CeMg12-type alloys synthesized by ball milling," Renewable Energy, Elsevier, vol. 132(C), pages 167-175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yanghuan & Li, Xufeng & Cai, Ying & Qi, Yan & Guo, Shihai & Zhao, Dongliang, 2019. "Improved hydrogen storage performances of Mg-Y-Ni-Cu alloys by melt spinning," Renewable Energy, Elsevier, vol. 138(C), pages 263-271.
    2. Wei, T.Y. & Lim, K.L. & Tseng, Y.S. & Chan, S.L.I., 2017. "A review on the characterization of hydrogen in hydrogen storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1122-1133.
    3. Zhang, Yanghuan & Zhang, Wei & Bu, Wengang & Cai, Ying & Qi, Yan & Guo, Shihai, 2019. "Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce-Mg-Ni-based CeMg12-type alloys synthesized by ball milling," Renewable Energy, Elsevier, vol. 132(C), pages 167-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:90:y:2016:i:c:p:554-564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.