IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v88y2016icp51-57.html
   My bibliography  Save this article

Preparation and catalytic performance of N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride /Na2SiO3 polymer-based catalyst for biodiesel production

Author

Listed:
  • Liang, Mengzhu
  • He, Benqiao
  • Shao, Yixuan
  • Li, Jianxin
  • Cheng, Yu

Abstract

A novel polymer-based alkaline catalyst was prepared with sodium silicate (Na2SiO3) and N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC), interlinked by epichlorohydrin (ECH), for biodiesel production. The structure and properties of the catalyst were studied by Fourier transform infrared spectroscopy, thermogravimetry-mass spectrometry and transmission electron microscopy. The effects of the variables on the transesterificaton of soybean oil to biodiesel were investigated. It is found that Na2SiO3 was bridged on HTCC chains through ECH and well dispersed in HTCC matrix in nano size. The transesterification conversion reached at 97.0% under the reaction conditions of methanol/oil molar ratio of 6:1, catalyst loading of 4.0 wt.% at 55 °C for 60 min. After the second run, the catalytic activity kept stable, which was contributed to the stability and dispersion of Na2SiO3 in the catalyst.

Suggested Citation

  • Liang, Mengzhu & He, Benqiao & Shao, Yixuan & Li, Jianxin & Cheng, Yu, 2016. "Preparation and catalytic performance of N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride /Na2SiO3 polymer-based catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 88(C), pages 51-57.
  • Handle: RePEc:eee:renene:v:88:y:2016:i:c:p:51-57
    DOI: 10.1016/j.renene.2015.11.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long, Yun-Duo & Fang, Zhen & Su, Tong-Chao & Yang, Qing, 2014. "Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts," Applied Energy, Elsevier, vol. 113(C), pages 1819-1825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Wenlei & Han, Yuxiang & Wang, Hongyan, 2018. "Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 125(C), pages 675-681.
    2. Xu, Chunping & Nasrollahzadeh, Mahmoud & Sajjadi, Mohaddeseh & Maham, Mehdi & Luque, Rafael & Puente-Santiago, Alain R., 2019. "Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 195-252.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    2. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    3. Vadery, Vinu & Cherikkallinmel, Sudha Kochiyil & Ramakrishnan, Resmi M. & Sugunan, Sankaran & Narayanan, Binitha N., 2019. "Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale," Renewable Energy, Elsevier, vol. 141(C), pages 1042-1053.
    4. Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Mukelabai, Mulako Dean & Wijayantha, Upul K.G. & Blanchard, Richard E., 2022. "Renewable hydrogen economy outlook in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Mathimani, Thangavel & Uma, Lakshmanan & Prabaharan, Dharmar, 2015. "Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization," Renewable Energy, Elsevier, vol. 81(C), pages 523-533.
    7. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    8. Elena David, 2020. "Evaluation of Hydrogen Yield Evolution in Gaseous Fraction and Biochar Structure Resulting from Walnut Shells Pyrolysis," Energies, MDPI, vol. 13(23), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:88:y:2016:i:c:p:51-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.