IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp680-689.html
   My bibliography  Save this article

Analysis of interannual variability of sunshine hours and precipitation over Peninsular Spain

Author

Listed:
  • Gil, Victoria
  • Gaertner, Miguel A.
  • Sanchez, Enrique
  • Gallardo, Clemente
  • Hagel, Edit
  • Tejeda, Cesar
  • de Castro, Manuel

Abstract

Solar energy is one of the more abundant sources of renewable energy. It would be desirable that it is more stable over time than other energies with high interannual variability like hydropower. In this study we analyse the interannual variability of sunshine hours and precipitation over Spain, with the aim of comparing the reliability of solar energy to hydropower. An analysis in this respect has not been done before. We have used data from almost 100 stations in the WMO–AEMET (Spanish State Agency for Meteorology) network, and have applied two indices, the coefficient of variability (CV) and the speed of convergence, defined as the number of years of data needed to fully characterize a site. The main result is that the interannual variability for sunshine hours is several times lower than for precipitation over most of Spain, with the exception of the northern coast. The southwestern peninsular area stands out in this respect. This area is characterized at the same time by the highest number of sunshine hours, high speed of convergence and a low maximum departure of annual sunshine hours from the long-term mean. All this make this area optimal and very reliable for placing solar power plants.

Suggested Citation

  • Gil, Victoria & Gaertner, Miguel A. & Sanchez, Enrique & Gallardo, Clemente & Hagel, Edit & Tejeda, Cesar & de Castro, Manuel, 2015. "Analysis of interannual variability of sunshine hours and precipitation over Peninsular Spain," Renewable Energy, Elsevier, vol. 83(C), pages 680-689.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:680-689
    DOI: 10.1016/j.renene.2015.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115003626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Miguel, A. & Bilbao, J. & Salsón, S. & Lage, A., 1994. "Solar radiation and sunshine hour maps in Castilla and León region (Spain)," Renewable Energy, Elsevier, vol. 4(8), pages 933-940.
    2. Lave, Matthew & Kleissl, Jan, 2010. "Solar variability of four sites across the state of Colorado," Renewable Energy, Elsevier, vol. 35(12), pages 2867-2873.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    2. Fernández Peruchena, Carlos M. & Gastón, Martín & Schroedter-Homscheidt, Marion & Kosmale, Miriam & Martínez Marco, Isabel & García-Moya, José Antonio & Casado-Rubio, José L., 2017. "Dynamic Paths: Towards high frequency direct normal irradiance forecasts," Energy, Elsevier, vol. 132(C), pages 315-323.
    3. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.
    4. Lappalainen, Kari & Valkealahti, Seppo, 2017. "Output power variation of different PV array configurations during irradiance transitions caused by moving clouds," Applied Energy, Elsevier, vol. 190(C), pages 902-910.
    5. Cagnano, A. & De Tuglie, E., 2016. "A decentralized voltage controller involving PV generators based on Lyapunov theory," Renewable Energy, Elsevier, vol. 86(C), pages 664-674.
    6. Lappalainen, Kari & Wang, Guang C. & Kleissl, Jan, 2020. "Estimation of the largest expected photovoltaic power ramp rates," Applied Energy, Elsevier, vol. 278(C).
    7. Haurant, P. & Muselli, M. & Gaillard, L. & Oberti, P., 2022. "A new methodology to analyse and optimize territorial compensations of solar radiation intermittency: A case study in Corsica Island (France)," Renewable Energy, Elsevier, vol. 185(C), pages 598-610.
    8. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
    9. Tripathy, Sujit Kumar & Mitra, Indradip & Heinemann, Detlev & Giridhar, Godugunur & Gomathinayagam, S., 2017. "Impact assessment of short-term variability of solar radiation in Rajasthan using SRRA data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 798-806.
    10. Roy, Sanjoy, 2015. "Statistical estimates of short duration power generated by a photovoltaic unit in environment of scattered cloud cover," Energy, Elsevier, vol. 89(C), pages 14-23.
    11. Mubiru, J. & Banda, E.J.K.B., 2012. "Monthly average daily global solar irradiation maps for Uganda: A location in the equatorial region," Renewable Energy, Elsevier, vol. 41(C), pages 412-415.
    12. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    13. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2014. "Managing solar-PV variability with geographical dispersion: An Ontario (Canada) case-study," Renewable Energy, Elsevier, vol. 68(C), pages 171-180.
    14. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    15. Chu, Yinghao & Wang, Yiling & Yang, Dazhi & Chen, Shanlin & Li, Mengying, 2024. "A review of distributed solar forecasting with remote sensing and deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    16. Assané, Djeto & Konan, Denise Eby & Anukoolthamchote, Pam Chasuta, 2019. "Assessing variability of photovoltaic load supply in Hawai‘i," Energy Policy, Elsevier, vol. 132(C), pages 290-298.
    17. Youcef Ettoumi, F. & Mefti, A. & Adane, A. & Bouroubi, M.Y., 2002. "Statistical analysis of solar measurements in Algeria using beta distributions," Renewable Energy, Elsevier, vol. 26(1), pages 47-67.
    18. Zhenyu Wang & Cuixia Tian & Qibing Zhu & Min Huang, 2018. "Hourly Solar Radiation Forecasting Using a Volterra-Least Squares Support Vector Machine Model Combined with Signal Decomposition," Energies, MDPI, vol. 11(1), pages 1-21, January.
    19. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    20. Kang, Byung O & Tam, Kwa-Sur, 2015. "New and improved methods to estimate day-ahead quantity and quality of solar irradiance," Applied Energy, Elsevier, vol. 137(C), pages 240-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:680-689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.