IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp123-131.html
   My bibliography  Save this article

Physical properties of G-class cement for geothermal well cementing in South Korea

Author

Listed:
  • Won, Jongmuk
  • Lee, Dongseop
  • Na, Kyunguk
  • Lee, In-Mo
  • Choi, Hangseok

Abstract

The cement material adopted for a new geothermal well project in South Korea is specialized as the G-class cement, which is commonly used in the oil-well industry, and regulated by the API (American Petroleum Institute). In order to maintain the optimal generating performance of geothermal wells, physical properties of the cementing material should be satisfactory. In this paper, the significant material properties (i.e., groutability, uniaxial compressive strength, thermal conductivity, bleeding potential, phenolphthalein indication) of the G-class cement were experimentally examined, with consideration of various water–cement (w/c) ratios as mix proportion. Important findings through the experiments are as follows; (1) Groutability of the G-class cement increases with the addition of a small amount of retarder. (2) There would be a structural problem when the w/c ratio is kept extremely high in order to obtain acceptable groutability. (3) Thermal conductivity of the G-class cement is small enough to prevent heat loss during circulating up hot steam or water from the deep underground to the ground surface. (4) The G-class cement used for geothermal-well cementing causes no bleeding problem. (5) The phenolphthalein indicator is applicable to distinguishing the G-class cement from the drilling mud.

Suggested Citation

  • Won, Jongmuk & Lee, Dongseop & Na, Kyunguk & Lee, In-Mo & Choi, Hangseok, 2015. "Physical properties of G-class cement for geothermal well cementing in South Korea," Renewable Energy, Elsevier, vol. 80(C), pages 123-131.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:123-131
    DOI: 10.1016/j.renene.2015.01.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kestin, J. & Wakeham, W.A., 1978. "A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 92(1), pages 102-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jongmuk Won & Hyun-Jun Choi & Hyobum Lee & Hangseok Choi, 2016. "Numerical Investigation on the Effect of Cementing Properties on the Thermal and Mechanical Stability of Geothermal Wells," Energies, MDPI, vol. 9(12), pages 1-13, December.
    2. Adonis Ichim & Catalin Teodoriu & Gioia Falcone, 2018. "Estimation of Cement Thermal Properties through the Three-Phase Model with Application to Geothermal Wells," Energies, MDPI, vol. 11(10), pages 1-12, October.
    3. Catalin Teodoriu & Mi Chin Yi & Saeed Salehi, 2019. "A Novel Experimental Investigation of Cement Mechanical Properties with Application to Geothermal Wells," Energies, MDPI, vol. 12(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jongmuk Won & Hyun-Jun Choi & Hyobum Lee & Hangseok Choi, 2016. "Numerical Investigation on the Effect of Cementing Properties on the Thermal and Mechanical Stability of Geothermal Wells," Energies, MDPI, vol. 9(12), pages 1-13, December.
    2. Hesam Moghadasi & Navid Malekian & Hamid Saffari & Amir Mirza Gheitaghy & Guo Qi Zhang, 2020. "Recent Advances in the Critical Heat Flux Amelioration of Pool Boiling Surfaces Using Metal Oxide Nanoparticle Deposition," Energies, MDPI, vol. 13(15), pages 1-49, August.
    3. Mohammed, H.A. & Al-aswadi, A.A. & Shuaib, N.H. & Saidur, R., 2011. "Convective heat transfer and fluid flow study over a step using nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2921-2939, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:123-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.