IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v76y2015icp258-263.html
   My bibliography  Save this article

A multivariate SIMCA index as discriminant in wood pellet quality assessment

Author

Listed:
  • Sgarbossa, Andrea
  • Costa, Corrado
  • Menesatti, Paolo
  • Antonucci, Francesca
  • Pallottino, Federico
  • Zanetti, Michela
  • Grigolato, Stefano
  • Cavalli, Raffaele

Abstract

The pellet market has experienced a continuous development and increase in recent years due to a number of positive properties of this enhanced biomass. However the supply chain has not been entirely able to follow the same trend, causing some issues, often related to the quality of traded products. These problems can be partially solved by ensuring a continuous and reliable flow of information regarding the quality parameters of wood pellets from the producers to the final users. The aim of this work is to define a metric index for quality parameters that can detect the certifiability of analyzed samples compared with those on the market. The model is built on measured quality parameters of certified and non-certified wood pellet samples taken from products on the market applying a multivariate class modelling methodology (soft independent modelling of class analogy, SIMCA). Results showed that the model can predict the general quality of some test samples and that its precision, already fairly high, can be constantly improved by adding new model samples. The output of the model is also the relative influence (modelling power) of each variable in the prediction of certifiability. The SIMCA model could be easily integrated and implemented on the most common digital platforms where users (private, laboratories, agencies, etc.) could test their samples and verify if the index of their pellet falls within the area defined by the model for certified samples.

Suggested Citation

  • Sgarbossa, Andrea & Costa, Corrado & Menesatti, Paolo & Antonucci, Francesca & Pallottino, Federico & Zanetti, Michela & Grigolato, Stefano & Cavalli, Raffaele, 2015. "A multivariate SIMCA index as discriminant in wood pellet quality assessment," Renewable Energy, Elsevier, vol. 76(C), pages 258-263.
  • Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:258-263
    DOI: 10.1016/j.renene.2014.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114007563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larsson, Sylvia H. & Rudolfsson, Magnus & Nordwaeger, Martin & Olofsson, Ingemar & Samuelsson, Robert, 2013. "Effects of moisture content, torrefaction temperature, and die temperature in pilot scale pelletizing of torrefied Norway spruce," Applied Energy, Elsevier, vol. 102(C), pages 827-832.
    2. García-Maraver, A. & Popov, V. & Zamorano, M., 2011. "A review of European standards for pellet quality," Renewable Energy, Elsevier, vol. 36(12), pages 3537-3540.
    3. Selkimäki, Mari & Mola-Yudego, Blas & Röser, Dominik & Prinz, Robert & Sikanen, Lauri, 2010. "Present and future trends in pellet markets, raw materials, and supply logistics in Sweden and Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3068-3075, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duca, D. & Mancini, M. & Rossini, G. & Mengarelli, C. & Foppa Pedretti, E. & Toscano, G. & Pizzi, A., 2016. "Soft Independent Modelling of Class Analogy applied to infrared spectroscopy for rapid discrimination between hardwood and softwood," Energy, Elsevier, vol. 117(P1), pages 251-258.
    2. Małgorzata Szczepanik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Adam Koniuszy & Małgorzata Hawrot-Paw & Artur Wolak, 2021. "The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion," Energies, MDPI, vol. 14(21), pages 1-9, October.
    3. Garcia, Dorival Pinheiro & Caraschi, José Cláudio & Ventorim, Gustavo & Vieira, Fábio Henrique Antunes & de Paula Protásio, Thiago, 2019. "Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)," Renewable Energy, Elsevier, vol. 139(C), pages 796-805.
    4. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    2. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    3. Proskurina, Svetlana & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2015. "The wood pellet business in Russia with the role of North-West Russian regions: Present trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 730-740.
    4. Proskurina, Svetlana & Rimppi, Heli & Heinimö, Jussi & Hansson, Julia & Orlov, Anton & Raghu, KC & Vakkilainen, Esa, 2016. "Logistical, economic, environmental and regulatory conditions for future wood pellet transportation by sea to Europe: The case of Northwest Russian seaports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 38-50.
    5. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    6. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    7. Pierdicca, Roberto & Balestra, Mattia & Micheletti, Giulia & Felicetti, Andrea & Toscano, Giuseppe, 2022. "Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach," Renewable Energy, Elsevier, vol. 197(C), pages 406-416.
    8. Rabaçal, M. & Fernandes, U. & Costa, M., 2013. "Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones," Renewable Energy, Elsevier, vol. 51(C), pages 220-226.
    9. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    10. Rudolfsson, Magnus & Larsson, Sylvia H. & Lestander, Torbjörn A., 2017. "New tool for improved control of sub-process interactions in rotating ring die pelletizing of torrefied biomass," Applied Energy, Elsevier, vol. 190(C), pages 835-840.
    11. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    12. Hamid Gilvari & Wiebren De Jong & Dingena L. Schott, 2020. "The Effect of Biomass Pellet Length, Test Conditions and Torrefaction on Mechanical Durability Characteristics According to ISO Standard 17831-1," Energies, MDPI, vol. 13(11), pages 1-16, June.
    13. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    14. Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
    15. Míguez, J.L. & Morán, J.C. & Granada, E. & Porteiro, J., 2012. "Review of technology in small-scale biomass combustion systems in the European market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3867-3875.
    16. Chugh, Shikha & Yu, T. Edward & Jackson, Samuel & Larson, James & English, Burton & Cho, Seong-Hoon, 2015. "Exploring the Potential to Penetrate the Energy Markets for Tennessee-Produced Switchgrass," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196899, Southern Agricultural Economics Association.
    17. Jakub Styks & Marek Wróbel, 2024. "Modular Open Chamber Stand for Biomass Densification Using the Example of Miscanthus × Giganteus Greef Et Deu," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    18. Cardarelli, Alessandro & Pinzi, Sara & Barbanera, Marco, 2022. "Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics," Renewable Energy, Elsevier, vol. 185(C), pages 704-716.
    19. Christoforou, Elias A. & Fokaides, Paris A., 2016. "Life cycle assessment (LCA) of olive husk torrefaction," Renewable Energy, Elsevier, vol. 90(C), pages 257-266.
    20. Poritosh Roy & Animesh Dutta & Jim Gallant, 2018. "Hydrothermal Carbonization of Peat Moss and Herbaceous Biomass (Miscanthus): A Potential Route for Bioenergy," Energies, MDPI, vol. 11(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:258-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.