IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v67y2014icp103-108.html
   My bibliography  Save this article

Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response

Author

Listed:
  • McPhail, Donald

Abstract

In 2012 there was approximately 2400 electric vehicle DC Fast Charging stations sold globally. According to Pike Research (Jerram and Gartner, 2012), it is anticipated that by 2020 there will be approximately 460,000 of them installed worldwide. A typical public DC fast charger delivers a maximum power output of 50 kW which allows a typical passenger vehicle to be 80% charged in 10–15 min, compared with 6–8 h for a 6.6 kW AC level 2 charging unit. While DC fast chargers offer users the convenience of being able to rapidly charge their vehicle, the unit's high power demand has the potential to put sudden strain on the electricity network, and incur significant demand charges.

Suggested Citation

  • McPhail, Donald, 2014. "Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response," Renewable Energy, Elsevier, vol. 67(C), pages 103-108.
  • Handle: RePEc:eee:renene:v:67:y:2014:i:c:p:103-108
    DOI: 10.1016/j.renene.2013.11.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113006010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.11.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Libing & Ribberink, Hajo, 2019. "Investigation of the potential to improve DC fast charging station economics by integrating photovoltaic power generation and/or local battery energy storage system," Energy, Elsevier, vol. 167(C), pages 246-259.
    2. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Calviño, Aida, 2019. "Fast charging stations placement methodology for electric taxis in urban zones," Energy, Elsevier, vol. 188(C).
    3. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    4. Faran Ahmed & Muhammad Naeem & Muhammad Iqbal, 2017. "ICT and renewable energy: a way forward to the next generation telecom base stations," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(1), pages 43-56, January.
    5. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    6. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Zhang, Tianyang & Pota, Himanshu & Chu, Chi-Cheng & Gadh, Rajit, 2018. "Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency," Applied Energy, Elsevier, vol. 226(C), pages 582-594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:67:y:2014:i:c:p:103-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.