IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v58y2013icp151-163.html
   My bibliography  Save this article

Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness

Author

Listed:
  • Kumar, Anil
  • Saini, R.P.
  • Saini, J.S.

Abstract

This paper presents the results of an experimental investigation of heat transfer and friction in the flow of air in rectangular ducts having multi v-shaped rib with gap roughness on one broad wall. The investigation encompassed Reynolds number (Re) from 2000 to 20,000, relative gap distance (Gd/Lv) values of 0.24–0.80, relative gap width (g/e) values of 0.5–1.5, relative roughness height (e/D) values of 0.022–0.043, relative roughness pitch (P/e) values of 6–12, relative roughness width ratio (W/w) values of 1–10, angle of attack (α) range of 30°–75°. The optimum values of geometrical parameters of roughness have been obtained and discussed. For Nusselt number (Nu), the maximum enhancement of the order of 6.74 times of the corresponding value of the smooth duct has been obtained, however the friction factor (f) has also been seen to increase by 6.37 times of that of the smooth duct. The rib parameters corresponding to maximum increase in Nu and f were Gd/Lv=0.69, g/e=1.0, e/D=0.043, P/e=8, W/w=6 and α=60°. Based on the experimental data, correlations for Nu and f have been developed as function of roughness parameters of multi v-shaped with gap rib and flow Reynolds number.

Suggested Citation

  • Kumar, Anil & Saini, R.P. & Saini, J.S., 2013. "Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness," Renewable Energy, Elsevier, vol. 58(C), pages 151-163.
  • Handle: RePEc:eee:renene:v:58:y:2013:i:c:p:151-163
    DOI: 10.1016/j.renene.2013.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113001699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aharwal, K.R. & Gandhi, B.K. & Saini, J.S., 2008. "Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater," Renewable Energy, Elsevier, vol. 33(4), pages 585-596.
    2. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2011. "Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs," Energy, Elsevier, vol. 36(8), pages 5053-5064.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    2. Singh Bisht, Vijay & Kumar Patil, Anil & Gupta, Anirudh, 2018. "Review and performance evaluation of roughened solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 954-977.
    3. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    4. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    5. Poongavanam, Ganesh Kumar & Panchabikesan, Karthik & Leo, Anto Joseph Deeyoko & Ramalingam, Velraj, 2018. "Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate," Renewable Energy, Elsevier, vol. 127(C), pages 213-229.
    6. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Hamid, Mohammed O.A. & Zhang, Bo, 2015. "Field synergy analysis for turbulent heat transfer on ribs roughened solar air heater," Renewable Energy, Elsevier, vol. 83(C), pages 1007-1019.
    8. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate," Renewable Energy, Elsevier, vol. 227(C).
    9. Lanjewar, A.M. & Bhagoria, J.L. & Agrawal, M.K., 2015. "Review of development of artificial roughness in solar air heater and performance evaluation of different orientations for double arc rib roughness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1214-1223.
    10. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.
    11. Ganesh Kumar, P. & Balaji, K. & Sakthivadivel, D. & Vigneswaran, V.S. & Velraj, R. & Kim, Sung Chul, 2021. "Enhancement of heat transfer in a combined solar air heating and water heater system," Energy, Elsevier, vol. 221(C).
    12. Patil, Anil Kumar, 2015. "Heat transfer mechanism and energy efficiency of artificially roughened solar air heaters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 681-689.
    13. Chamoli, Sunil & Thakur, N.S. & Saini, J.S., 2012. "A review of turbulence promoters used in solar thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3154-3175.
    14. Alam, Tabish & Kim, Man-Hoe, 2017. "A critical review on artificial roughness provided in rectangular solar air heater duct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 387-400.
    15. Kumar, Vikash & Murmu, Ramesh, 2021. "Experimental investigation for thermal performance of inclined spherical ball roughened solar air duct," Renewable Energy, Elsevier, vol. 172(C), pages 1365-1392.
    16. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    17. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    18. Kumar, Anil & Saini, R.P. & Saini, J.S., 2012. "Heat and fluid flow characteristics of roughened solar air heater ducts – A review," Renewable Energy, Elsevier, vol. 47(C), pages 77-94.
    19. Sanjeev Kumar Yadav & Atul Lanjewar, 2023. "Experimental analysis of solar air heater duct with discrete arc-pattern combined staggered element roughness on absorber plate," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8651-8675, August.
    20. Jain, Piyush Kumar & Lanjewar, Atul, 2019. "Overview of V-RIB geometries in solar air heater and performance evaluation of a new V-RIB geometry," Renewable Energy, Elsevier, vol. 133(C), pages 77-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:58:y:2013:i:c:p:151-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.